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Introduction to the User’s Guide 

Background	
  
When making health care decisions, patients, health care providers, and policymakers routinely 
seek unbiased information about the effects of treatment on a variety of health outcomes.  
Nonetheless, it is estimated that more than half of medical treatments lack valid evidence of 
effectiveness,1,2,3 particularly for long-term and patient-centered outcomes.  These outcomes 
include humanistic measures such as the effects of treatment on quality of life, which may be 
among the most important factors that affect patients’ decisions about whether or not to use a 
treatment.  In addition, therapies that demonstrate efficacy in well-controlled experimental 
settings like randomized controlled trials may perform differently in general clinical practice 
where there is a wider diversity of patients, providers, and health care delivery systems.4,5  The 
effects of these variations on treatment are sometimes unknown but can significantly influence 
the net benefits and risks of different therapy options in individual patients.   
 
Moreover, efficacy studies designed to optimize internal validity often make tradeoffs with 
respect to external validity or the generalizability of the results to patients, providers, and settings 
that are different than those which were studied.  The absence of patient-relevant and unbiased 
information about the effectiveness of treatments across the range of potential users can create a 
level of uncertainty about what outcomes will occur in different patient populations who seek 
care in general practice.  Unfortunately, the lack of relevant information is often highest for 
patient groups with the greatest need for health care like the elderly, disabled, or those with 
complex health conditions.  Uncertainty about the effects of treatment on patient outcomes may 
lead to the overuse of ineffective or potentially harmful therapies, the underuse of effective 
therapies, and empiric treatment or off-label use for conditions for which the therapies have not 
been rigorously studied; the latter situation may be a risky gamble since the true balance of 
treatment harms and benefits may be unknown or poorly understood. 
 
In addition, new drugs and other interventions often lack comparative efficacy data to quantify a 
therapy’s equivalence or superiority to existing treatments.6  This lack of information contributes 
to the uncertainty about whether a new therapy will be better, worse, or the same as existing 
treatment options.  In some cases, it may also positively skew patient or provider demand in 
favor of newer therapies and technologies because of expectations that these therapies are 
inherently better than those that are already available.  An artificially high demand for new 
technologies creates a conundrum for society, which seeks to foster innovation and the 
development of substantially better therapies - while avoiding the inefficient use of resources 
that occurs when ineffective or harmful therapies are used in patients who receive little or no 
benefit. 
 
In the United States and internationally, decisions based on the principles of evidence-based 
health care have guided health care practice, education, and policy for over 25 years.7  The core 
principles of evidence-based health care are that decisions should be made using the best 
available scientific evidence in light of an individual patient and that patient’s values.  At the 
policy level, these decisions are usually focused on specific populations like Medicare or 
Medicaid enrollees and may include considerations about costs and the availability of resources.  
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Evidence is usually derived from critical appraisal of all relevant research as is done in a 
systematic review of the literature.  Evidence is generally considered strong when appraised 
studies show consistent results, are well-designed to minimize bias, and are from representative 
patient populations.  Treatment decisions are generally guided by assessing the certainty that a 
course of therapy will lead to the outcomes of interest to the patient; and the likelihood that this 
conclusion will be affected by the results of future studies.   
 
High quality research can reduce uncertainty about the net benefits of treatment by providing 
scientific evidence and other objective information for informing health care decisions.  As 
findings from well-controlled studies are published in the health care literature, knowledge 
accumulates about the effects of treatment on health outcomes in different patient populations 
and settings of care.  This knowledge can be used to inform patient decision making so that the 
most appropriate treatment for an individual patient is provided.  Yet, it is rare that any one study 
addresses all dimensions of a health care issue and there are often knowledge gaps in areas where 
no research has been conducted.  Likewise, some published findings may be flawed or have 
biases that limit or invalidate its conclusions.  In both cases, knowledge gaps and poor quality 
research restrict the conclusions that may be drawn based on the evidence base.  This requires 
that patients, other stakeholders, systematic reviewers, and researchers work collaboratively to 
develop new studies and programs of research that can be used to inform the most important 
decisions facing patients about their health care. 
 
Recognizing the need for outcomes research, Section 1013 of the Medicare Prescription Drug, 
Improvement, and Modernization Act (MMA) authorized AHRQ in 2003 to conduct studies 
designed to improve the quality, effectiveness, and efficiency of Medicare, Medicaid, and the 
State Children's Health Insurance Program (SCHIP).8  The essential goals of Section 1013 are to 
develop and disseminate valid scientific evidence about the comparative effectiveness of 
different treatments and appropriate clinical approaches to difficult health problems.  To 
implement Section 1013, AHRQ established the “Effective Health Care” program, which 
supports a variety of activities aimed at synthesizing, generating, and disseminating scientific 
evidence to patients, providers, and policymakers.9  Subsequent legislation including the 
American Recovery and Reinvestment Act of 2009 and the Patient Protection and Affordable 
Care Act of 2010 (ACA) provide expanded legislative provisions for AHRQ to conduct 
comparative effectiveness and patient-centered outcomes research.  In addition, the ACA 
established a new non-governmental research institute, the Patient-Centered Outcomes Research 
Institute (PCORI).  The Institute is an independent organization created to sponsor research that 
can be used to inform health care decisions.  The ACA includes statutory roles for AHRQ and 
the National Institutes of Health in PCORI, which provides a unique relationship for 
collaboration between government and non-government entities. 
 
A component of AHRQ’s EHC program that is devoted to the generation of new scientific 
evidence is the DEcIDE Research Network.  DEcIDE is an acronym for Developing Evidence to 
Inform Decisions about Effectiveness, which is a collaborative research program that currently 
involves eleven research centers.10  These centers are primarily focused on conducting 
observational CER studies and methodological activities in collaborations with patients, other 
stakeholders, and AHRQ.  Through the DEcIDE Network, new scientific evidence is developed 
to address knowledge gaps that are critical to improving the quality, effectiveness, and efficiency 
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of health care delivered in the United States.  Examples of research that has been produced 
through the DEcIDE network include examining the health outcomes of drug-eluting stent 
implantation,11 antipsychotic use in the elderly,12 medication use in chronic obstructive 
pulmonary disease,13 carotid revascularization among Medicare beneficiaries,14 prescription 
drugs in pregnancy,15 ADHD treatment in children16 and adults,17 radiation therapy in the 
treatment of prostate cancer,18 and research methods.19,20 

Aims	
  of	
  the	
  User’s	
  Guide	
  to	
  Designing	
  Observational	
  CER	
  Protocols	
  
The goal of the AHRQ DEcIDE program is to generate scientific evidence that improves 
knowledge and informs decisions about the outcomes and effectiveness of health care.  Evidence 
generation is done by supporting the development of scientifically rigorous research that is 
designed to produce new knowledge and reduce uncertainty about the effects of treatments, 
prevention, or other interventions on patient health outcomes.  One of the most important 
components of designing research is the creation of a study protocol, which is the researchers’ 
blueprint to guide and govern all aspects of how a study will be conducted.  A study protocol 
directs the execution of a study to help ensure the validity of the final study results.  It also 
provides transparency in how the research is conducted and improves the reproducibly and 
replication of the research by others, thereby potentially increasing the credibility and validity of 
a study’s findings.  
 
For studies designed as randomized clinical trials, research protocols are common and standards 
have been developed for the content of these protocols.  However, for other study designs, such 
as observational research, there are few standards specifically for what elements are 
recommended for inclusion in a study protocol.  As a result, there are a wide range of practices 
among investigators.21  Research that is financially supported through grant or contract funding is 
usually awarded based on a study proposal or grant application, which may contain many aspects 
of a protocol.  However, funding proposals may also lack specificity in analysis plans, 
procedures, measurements, instrumentation, and other key design considerations that are needed 
to carry out the study and potentially replicate it for independent verification of the results.  
Furthermore, funding proposals are not usually publicly available since the proposals may 
contain proprietary information. 
 
In addition, a core principle of comparative effectiveness research, patient-centered outcomes 
research, and other forms of translational research is that collaborations between researchers and 
stakeholders should be formed so the outputs of research are relevant, applicable, and potentially 
useable for informing stakeholder decisions or actions.  A study with a protocol that was 
developed through the guidance of accepted scientific standards is better served in minimizing 
the risk biases and holds potential to produce more valid research.  In addition, written guidance 
for protocol development helps facilitate communication between researchers and stakeholders 
so that they can work collaboratively to design new research in a way that protects against biases 
being introduced into the study design.  The absence of standards for developing protocols may 
open opportunities for biases being introduced into study design either inadvertently or, however 
subtle, intentionally if researchers, stakeholders, or others have specific interests in directing 
research to favor certain outcomes. 
 
The overall aims of this User’s Guide for designing comparative effectiveness research protocols 
are to identify both minimal standards and best practices for designing observational comparative 
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effectiveness research (CER) studies in the DEcIDE Network.  In addition, other researchers 
who are not affiliated with the DEcIDE Network may also wish to use this User’s Guide and 
adapt or expand upon the principles described in the document.  CER is still a relatively new 
field of inquiry that has its origins across multiple disciplines including health technology 
assessment, clinical research, epidemiology, economics, and health services research.  Although 
the definition of CER and the body of work it represents is likely to evolve and be refined over 
time, a central focus that has emerged is developing better scientific evidence on the effects of 
treatment on patient-centered health outcomes.  For this version of the User’s Guide, the 
definition of CER from the Institute of Medicine report will be used.22  The IOM report states 
that CER is the “generation and synthesis of evidence that compares the benefits and harms of 
alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve 
delivery of care.  The purpose of CER is to assist consumers, clinicians, purchasers, and 
policymakers to make informed decisions that will improve care both at the individual and the 
population levels.”  
 
The User’s Guide was created over a period of approximately two years by researchers affiliated 
with AHRQ’s Effective Health Care program, particularly those in the DEcIDE Network.  A 
goal was for investigators to articulate key considerations for observational CER study design 
within the DEcIDE program to strengthen research in the program and improve the transparency 
of the methods that are applied.  The User’s Guide was modeled on similar AHRQ initiatives to 
publish methods guides for conducting comparative effectiveness systematic reviews23 and 
patient registries.24  Investigators worked together to write each chapter, which were subject to 
multiple internal and external independent reviews.  All investigators had the opportunity to 
discuss, review, and comment on the recommendations that are provided in this document.  
Undoubtedly, new approaches to research will develop and the minimal standards of practice 
will change or evolve over time, which will necessitate periodic update of the User’s Guide.  
Nonetheless, this document brings together the knowledge of the current DEcIDE program 
researchers to begin laying the groundwork for writing better research protocols for 
observational CER studies.  
 
 To summarize, the goals for the Document are to: 

• Support the development of scientifically rigorous observational research that produces 
valid new knowledge and reduces uncertainty about the effects of interventions on patient 
health outcomes. 

• Increase the collaboration between researchers, patients, and other decision makers in 
designing valid studies that generate new scientific evidence for informing health care 
decisions. 

• Increase the transparency of methodologies and study designs that are used in 
comparative effectiveness and patient-centered outcomes research. 

• Improve the quality and consistency of research by eliminating or reducing inappropriate 
variation in the design of studies. 

• Stimulate researchers and stakeholders to consider important principles when designing a 
comparative effectiveness study and writing a study protocol. 
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Summary	
  and	
  Conclusion	
  
The User’s Guide serves as a resource for investigators and stakeholders when designing 
observational CER studies, particularly those with findings that are intended to translate into 
decisions or actions.  The Guide provides principles for designing research that will inform 
health care decisions of patients and other stakeholders.  Furthermore, the Guide serves as a 
reference for increasing the transparency of the methods that are used in a study and standardize 
the review of protocols through checklists that are provided in every chapter. 
 
The User’s Guide draws from the literature and complements other guidance on conducting 
observational research,25 but it is unique in that it is focused on developing study protocols that 
lead to valid research findings that are relevant to the important health care decisions facing 
patients, providers, and policymakers.  In addition, the authors of the User’s Guide are 
researchers who are knowledgeable of the literature on methods for observational studies as well 
as the technical and practical aspects of implementing observational CER studies.  Nevertheless, 
as the first guidance for developing CER protocols, this document will need to be evaluated, 
tested, and revised over time before widespread adoption is recommended.  Notwithstanding this 
caveat, researchers and their collaborators may wish to consider the principles discussed in the 
User’s Guide when designing new observational CER studies and specify the final study design 
in a written protocol that is publically available.   
 
Since the design of a new research study involves critical thinking, making important decisions, 
and accepting some limitations, the User’s Guide is intended to serve as a reference to 
researchers and stakeholders in thinking through the tradeoffs of key issues when designing a 
new research study.  The User’s Guide is not meant to be prescriptive and is one of many 
resources for designing CER and other observational studies that investigators and stakeholders 
should consult when designing an observational CER study.  Examples of these other resources 
include the Good ReseArch for Comparative Effectiveness (GRACE Principles),26 the ISPE 
Guidelines for Good Pharmacoepidemiology Practices,27,28 the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) guidelines,29 the ISPOR Good Research 
Practices reports,30 the Guide on Methodological Standards in Pharmacoepidemiology by 
(ENCePP),31 and Methodological Standards for Patient-Centered Outcomes Research by 
PCORI.32  Ultimately, the research team is responsible for the validity and integrity of their final 
study design.  As a result, the research team should bring together a variety of resources and 
expertise to design and execute an observational CER study. 
 
The User’s Guide was written with the intent of improving the overall quality of research in the 
DEcIDE program and other similar observational research networks.  The goal is to support the 
development of scientifically rigorous research that provides new knowledge for informing 
health care decisions and protects against bias being introduced into the research.  As new 
research methods, standards, and statistical tools develop, this User’s Guide will need to be 
periodically updated.  It is the hope that researchers and stakeholders will find the User’s Guide 
to be useful.  Comments from investigators, stakeholders, and other users are welcome so they 
can be considered for incorporation into future versions of the User’s Guide. 
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Chapter	
  1.	
  Study	
  Objectives	
  and	
  Questions	
  

Abstract	
  
The steps involved in the process of developing research questions and study objectives for 
conducting observational comparative effectiveness research are described in this chapter.  It is 
important to begin with identifying decisions under consideration, determining who the decision 
makers in the specific area of research under study are, and understanding the context in which 
decisions are being made. Synthesizing the current knowledge base and identifying evidence 
gaps is the next important step in the process, followed by conceptualizing the research problem, 
which includes developing questions that address the gaps in existing evidence.  Understanding 
the stage of knowledge that the study is designed to address will come from developing these 
initial questions.  Identifying which questions are critical to reduce decisional uncertainty and 
minimize gaps in the current knowledge base is an important part of developing a successful 
framework.  In particular, it is beneficial to look at what study populations, interventions, 
comparisons, outcomes, timeframe, and settings (PICOTS framework) are most important to 
decision makers in weighing the balance of harms and benefits of action.  Some research 
questions are easier to operationalize than others, and study limitations should be recognized and 
accepted from an early stage.  The level of new scientific evidence that is required by the 
decisionmaker to make a decision or to take action must be recognized.  Lastly, the magnitude of 
effect must be specified.  This can mean defining what is a clinically meaningful difference in 
the study endpoints from the perspective of the decision maker and/or defining what is a 
meaningful difference from the patient’s perspective.  

Overview	
  	
  
The foundation for designing a new research protocol is the study’s objectives and the questions 
that will be investigated through its implementation.  All aspects of study design and analysis are 
based on the objectives and questions that are articulated in a study’s protocol.  Consequently, it 
is exceedingly important that a study’s objectives and questions are formulated meticulously and 
written precisely in order for the research to be successful in generating new knowledge that can 
be used to inform health care decisions and actions. 
  
An important aspect of CER1 and other forms of translational research is the potential for early 
involvement and inclusion of patients and other stakeholders to collaborate with researchers in 
identifying study objectives, key questions, major study endpoints, and the evidentiary standards 
that are needed to inform decision making.  The involvement of stakeholders in formulating the 
research questions increases the applicability of the study to the end users and facilitates 
appropriate translation of the results into health care practice and use by patient communities.  
While stakeholders may be defined in multiple ways, for the purposes of this User’s Guide, a 
broad definition will be used.  Hence, stakeholders are defined as individuals or organizations 
that use scientific evidence for decision making and therefore have an interest in the results of 
new research.  Implicit in this definition of stakeholders is the importance for stakeholders to 
understand the scientific process including the limitations of research, particularly those 
involving human subjects.  Ideally, stakeholders also express commitment to using objective 
scientific evidence to inform their decision making and recognize that disregarding sound 
scientific methods will often undermine decision making.  For stakeholder organizations, it is 
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also advantageous if the organization has well-established processes for transparently reviewing 
and incorporating research findings into decisions as well as organized channels for 
disseminating research results. 
 
There are at least seven essential steps to the conceptualization and development of a research 
question or set of questions for an observational CER protocol.  These steps are presented as a 
general framework in Table 1.1 below and elaborated upon in the subsequent sections of this 
chapter.  The framework is based on the principle that researchers and stakeholders will work 
together to objectively lay out the research problems, research questions, study objectives, and 
key parameters for which scientific evidence is needed to inform decision making or health care 
actions.  The intent of this framework is to facilitate communication between researchers and 
stakeholders in conceptualizing the research problem and the design of a study (or a program of 
research involving a series of studies) in order to maximize the potential that new knowledge is 
created from the research with results that can inform decision making.  To do this, research 
results must be relevant, applicable, unbiased, and sufficient to meet the evidentiary threshold for 
decision making or action by stakeholders.  In order for the results to be valid and credible, all 
persons involved must be committed to protecting the integrity of the research from bias and 
conflicts of interest. 
 
Table 1.1. Framework for Developing and Conceptualizing a CER Research Protocol  
 

Domain Relevant Questions 
Identify Decisions, 
Decisionmakers, Actions, 
and Context 

What health care decision or set of decisions are being considered about the 
comparative effectiveness, risks, or benefits of medical treatment, 
management, diagnosis, or prevention of illness and injury?  Who are the 
decisionmakers and in what context is the decision being made? 

Synthesize Current 
Knowledge Base 

What is known from the available scientific evidence and what is unknown 
because the evidence is insufficient or absent? 

Conceptualize the Research 
Problem 

What series of research questions and studies are critical to address gaps in 
the existing knowledge base?  

Determine the Stage of 
Knowledge Development 

What stage of knowledge is the study designed to address?   

Apply PICOTS Framework What research questions or series of questions are critical to reduce decisional 
uncertainty and gaps in the current knowledge base? For a particular question, 
what study populations, interventions, comparisons, outcomes, timeframe, 
and settings are most important to the decision maker(s) in weighing the 
balance of harms and benefits of action? Are some research questions easier 
to operationalize than others? Are intervention effects expected to be 
homogeneous or heterogeneous between different population subgroups? 

Discuss Evidentiary Need 
and Uncertainty 

What level of new scientific evidence is needed by the decisionmaker to 
make a decision or to take action? 

Specify Magnitude of Effect What is a clinically meaningful difference in the study endpoints from the 
perspective of the decisionmaker? What is a meaningful difference from the 
patient’s perspective (e.g., symptoms interfering with work or social life)? 
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Identify	
  Decisions,	
  Decision	
  Makers,	
  Actions,	
  and	
  Context	
  
In order for research findings to be useful for decision making, the study protocol should clearly 
articulate the decisions or actions for which stakeholders seek new scientific evidence.  While 
only some studies may be sufficiently robust for making decisions or taking action, statements 
that describe the stakeholders’ decisions will assist those who read the protocol to understand the 
rationale for the study and its potential for informing decisions or translation of the findings into 
changes in health care practices.  This information also improves the ability of protocol readers 
to understand the purpose of the study so they can critically review the study design and provide 
recommendations for ways it may be potentially improved.  If stakeholders have a need to make 
decisions within a critical timeframe for regulatory, ethical, or other reasons, this interval should 
be expressed to researchers and described in the protocol.  In some cases, the timeframe for 
decision making may influence the choice of outcomes that can be studied and the study designs 
that can be used.  For some stakeholders’ questions, research and decision making may need to 
be divided into stages since it may take years for outcomes with long lag times to occur and 
research findings will be delayed until they do.   
 
In writing this section of the protocol, investigators should ask stakeholders to describe the 
context in which the decision will be made or actions will be taken.  This context includes the 
background and rationale for the decision, key areas of uncertainty and controversies 
surrounding the decision, how scientific evidence will be used for informing the decision, the 
process stakeholders will use to reach decisions based on scientific evidence, and a description of 
the key stakeholders who will use or potentially be affected by the decision.  By explaining these 
contextual factors that surround the decision, investigators are able to work with stakeholders to 
determine the study objectives and other major parameters of the study.  This work also provides 
the opportunity to discuss how the tools of science can be applied to generate new evidence for 
informing stakeholder decisions and what limits may exist in those tools.  In addition, this initial 
step begins to clarify the number of analyses that will be necessary to generate the evidence that 
stakeholders need to make a decision or take other actions with sufficient certainty in the 
outcomes of interest.  Finally, the contextual information facilitates advance planning and 
discussions by researchers and stakeholders about approaches to translation and implementation 
of the study findings once the research is completed. 

Synthesize	
  Current	
  Knowledge	
  Base	
  
In designing a new study, investigators should conduct a comprehensive review of the literature, 
critically appraise published studies, and synthesize what is known as it relates to the research 
objectives.  Specifically, investigators should summarize in the protocol what is known about the 
efficacy, effectiveness, and safety of the interventions and about the outcomes being studied.  
Furthermore, investigators should discuss measures that have been used in prior research and 
whether these measures have changed over time.  These descriptions will provide background on 
the knowledge base for the current protocol.  Equally important is to identify what elements of 
the research problem are unknown because evidence is absent, insufficient, or conflicting.   
 
For some research problems, systematic reviews of the literature may be available and can be 
useful resources to guide the study design in the protocol.  The AHRQ Evidence-based Practice 
Centers2 and the Cochrane Collaboration3 are examples of established programs that conduct 
thorough systematic reviews, technology assessments, and specialized comparative effectiveness 
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reviews using standardized methods.  When available, systematic reviews and technology 
assessments should be consulted as resources for investigators to assess the current knowledge 
base when designing new studies and working with stakeholders. 
 
When reviewing the literature, investigators and stakeholders should identify the most relevant 
studies and guidelines about the interventions that will be studied.  This will allow readers to 
understand how new research will add to the existing knowledge base.  If guidelines are a source 
of information, then investigators should examine whether these guidelines have been updated to 
incorporate recent literature.  In addition, investigators should assess the health sciences 
literature to determine what is known about expected effects of the interventions based on 
current understanding of the pathophysiology of the target condition.  Furthermore, clinical 
experts should be consulted to help identify what gaps exist in current knowledge based on their 
expertise and interactions with patients.  Relevant questions to ask to assess the current 
knowledge base for development of an observational CER study protocol are:  

• What are the most relevant studies and guidelines about the interventions and why are 
these studies relevant to the protocol (e.g., because of the study findings, time period 
conducted, populations studied, etc.)? 

• Are there differences in recommendations from clinical guidelines that would indicate 
clinical equipoise? 

• What else is known about the expected effects of the interventions based on current 
understanding of the pathophysiology of the targeted condition? 

• What do clinical experts say about gaps in current knowledge? 

Conceptualize	
  the	
  Research	
  Problem	
  	
  
In designing studies for addressing stakeholder questions, investigators should engage multiple 
stakeholders in discussions about how the research problem is conceptualized from the 
stakeholders’ perspective.  These discussions will aid in designing a study that can be used to 
inform decision making.  Together, investigators and stakeholders should work collaboratively to 
determine the major objectives of the study based on the health care decisions facing 
stakeholders.  As pointed out by Heckman4, research objectives should be formalized outside 
considerations of available data and the inferences that can be made from various statistical 
estimation approaches.  This will allow the study objectives to be determined by stakeholder 
needs rather than the availability of existing data.  A thorough discussion of these considerations 
is beyond the scope of this chapter, but some important considerations are summarized in 
Supplement 1.  
 
In order to conceptualize the problem, stakeholders and other experts should be asked to describe 
the potential relationships between the intervention and important health outcomes.  This 
description will help researchers develop preliminary hypotheses about the stated relationships.  
Likewise, stakeholders, researchers, and other experts should be asked to enumerate all major 
assumptions that affect the conceptualization of the research problem, but will not be directly 
examined in the study.  These assumptions should be described in the study protocol and in 
reporting final study results.  By clearly stating the assumptions, protocol reviewers will be better 
able to assess how the assumptions may influence the study results. 
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Based on the conceptualization of the research problem, investigators and stakeholders should 
make use of applicable scientific theory in the design of the study protocol and developing the 
analytic plan.  Research that is designed using a validated theory has a higher potential to reach 
valid conclusions and improve the overall understanding of a phenomenon.  In addition, theory 
will aid in the interpretation of the study findings since these results can be put in context with 
the theory and past research.  Depending upon the nature of the inquiry, theory from specific 
disciplines like health behavior, sociology, or biology could be the basis for designing the study.  
In addition, the research team should work with stakeholders to develop a conceptual model or 
framework to guide the implementation of the study.  The protocol should also contain one or 
more figures that summarize the conceptual model or framework as it applies to the study.  
These figures will allow readers to understand the theoretical or conceptual basis for the study 
and how the theory is operationalized for the specific study.  The figures should diagram 
relationships between study variables and outcomes to help readers of the protocol visualize 
relationships that will be examined in the study.   
 
For research questions about causal associations between exposures and outcomes, causal 
models such as directed acyclic graphs (DAGs) may be a useful tool in designing the conceptual 
framework for the study and developing the analytic plan.  The value of DAGs in the context of 
refining study questions is that they make assumptions explicit in ways that can clarify gaps in 
knowledge.  Free software such as “DAGitty” is available for creating, editing, and analyzing 
causal models.5  A thorough discussion of DAGs is beyond the scope of this chapter, but more 
information about DAGs is available in Supplement 2.  
 
The following list of questions may be useful for defining and describing a study’s conceptual 
framework in a CER protocol: 
 

• What are the main objectives of the study as it relates to specific decisions to be made? 
• What relationships, if any, do experts hypothesize exist between interventions and 

outcomes? 
• What are the major assumptions of decision makers, investigators, and other experts 

about the problem or phenomenon being studied? 
• What conceptual model will guide the study design & interpretation? 

o What is known about each element of the model? 
o Can relationships be expressed by causal diagrams? 

Determine	
  the	
  Stage	
  of	
  Knowledge	
  Development	
  for	
  the	
  Study	
  Design	
  
The scientific method is a process of observation and experimentation in order for the evidence 
base to be expanded as new knowledge is developed.  Therefore, stakeholders and investigators 
should consider whether a program of research that is comprised of a sequential or concurrent 
series of studies is needed to adequately make a decision, rather than a single study.  Staging the 
research into multiple studies and making interim decisions may improve the final decision and 
make judicious use of scarce research resources.  In some cases, the results of preliminary 
studies, descriptive epidemiology, or pilot work may be helpful for making interim decisions and 
designing further research.  Overall, a planned series of related studies or a program of research 
may be needed to adequately address stakeholders’ decisions.   
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An example of a structured program of research is the four phases of clinical studies that are 
used by the Food and Drug Administration (FDA) to reach a decision about whether or not a new 
drug is safe and efficacious for market approval in the United States.  Using this analogy, the 
final decision about whether a drug is efficacious and safe to be marketed for specific medical 
indications is based upon the accumulation of scientific evidence from a series of studies (i.e., 
not from any individual study), which are conducted concurrently in multiple sequential phases.  
The evidence generated in each phase is reviewed to make interim decisions about the safety and 
efficacy of a new pharmaceutical until ultimately all the evidence is reviewed to make a final 
decision about drug approval.   
 
Under the FDA model for decision making, initial research involves laboratory and animal tests.  
If the evidence generated in these studies indicates the drug is active and not toxic, the sponsor 
submits an application for an investigational new drug to the FDA.  If the FDA approves, human 
testing for safety and efficacy can begin.  The first phase of human testing is usually conducted 
in a limited number of healthy volunteers (i.e., Phase 1).  If these trials show evidence that the 
product is safe in healthy volunteers, then the drug is further studied in a small number of 
volunteers who have the targeted condition (i.e., Phase 2).  If phase 2 studies show the drug has a 
therapeutic effect and lacks significant adverse effects, then trials with large numbers of people 
will be conducted to determine the drug’s safety and efficacy (i.e., Phase 3).  Following these 
trials, all relevant scientific studies are submitted to the FDA for a decision about whether the 
drug is approved for marketing.  If there are additional considerations like special safety issues, 
observational studies may be required to assess the safety of the drug in routine clinical care after 
the drug is approved for marketing (i.e., Phase 4).  Overall, the decision making and research are 
staged so that the collective findings from all studies are used by the FDA to make interim 
decisions until the final decision is made about whether a medical product will be approved for 
marketing.   
 
While most decisions about the comparative effectiveness of interventions will not need such 
extensive testing, it still may be prudent to stage research in a way that allows for interim 
decisions and sequentially more rigorous studies.  On the other hand, conditional approval or 
interim decisions may risk confusing patients and other stakeholders about the extent to which 
current evidence indicates that a treatment is effective and safe for all individuals with a health 
condition.  For instance, under this staged approach new treatments could rapidly diffuse into a 
market even when there is limited evidence of long-term effectiveness and safety for all potential 
users.  An illustrative example of this is the case of lung-volume reduction surgery, which was 
increasingly being used to treat severe emphysema despite limited evidence supporting its safety 
and efficacy until the safety of the procedure was questioned by new research.6 
 
Below is one potential categorization for the stages of knowledge development as it relates to 
informing decision about questions of comparative effectiveness: 
 

1. Descriptive Analysis 
2. Hypothesis Generation 
3. Feasibility Studies/Proof of Concept 
4. Hypothesis Supporting 
5. Hypothesis Testing 
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The first stages (i.e., descriptive analysis, hypothesis generation, and feasibility studies) are not 
mutually exclusive and are usually not intended to provide conclusive results for most decisions.  
Instead, these provide preliminary evidence or feasibility testing before larger, more resource 
intensive studies are launched.  Results from these categories of studies may allow for interim 
decision making (e.g., conditional approval for reimbursement of a treatment while further 
research is conducted).  While a phased approach to research may delay when a conclusive 
decision can be reached, it does help to conserve resources such as those that may be consumed 
in launching a large multicenter study when a smaller study may be sufficient.  Investigators will 
need to engage stakeholders to prioritize what stage of research may be most useful for the 
practical range of decisions that will be made.   
 
Investigators should discuss in the protocol what stage of knowledge the current study will fulfill 
in light of the actions available to different stakeholders.  This will allow reviewers of the 
protocol to assess the degree to which the evidence generated in the study holds the potential to 
fill specific knowledge gaps.  For studies that are described in the protocol as preliminary, this 
may also help readers to understand other tradeoffs that were made in the design of the study 
terms of methodological limitations that were accepted a priori in order to gather preliminary 
information about the research questions.   

Defining	
  and	
  Refining	
  Study	
  Questions	
  Using	
  PICOTS	
  Framework	
  
As recommended in other AHRQ methods guides,7 investigators should engage stakeholders in a 
dialogue to understand the objectives of the research in practical terms, particularly so that 
investigators know the types of decisions that the research may affect.  In working with 
stakeholders to develop research questions that can be studied with scientific methods, 
stakeholders may be asked to identify six key components of the research questions that will 
form the basis for designing the study.  These components are reflected in the PICOTS typology 
and shown below in Table 1.2.  These components represent the critical elements that will help 
investigators design a study that will be able to address the stakeholders’ needs.  Additional 
references that expand upon how to frame research questions can be found in the literature.8,9 
 
The PICOTS typology10 outlines the key parts of the research questions that the study will be 
designed to addressed.  As new research protocols are developed these questions can be 
presented in preliminary format and then refined as other steps in the process are implemented.  
After the preliminary questions are refined, investigators should examine the questions to make 
sure that they will meet the needs of the stakeholders.  In addition, they should assess whether 
the questions can be answered within the timeframe allotted and with the resources that are 
available for the study. 
 
Table 1.2 PICOTS Typology for Developing Research Questions 
 
Component Relevant Questions 
Population What is the patient population of interest? Are intervention effects expected to be 

homogeneous or heterogeneous between different subgroups of the population?  
What subgroups will be considered in terms of age, gender, ethnicity, etc.?   

Intervention What is the intervention of interest (e.g., drug, device, procedure, or test)? 
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Component Relevant Questions 
Comparator What are the alternatives? 
Outcomes What are the outcomes and endpoints of interest? 
Timing What is the timeframe of interest for assessing outcomes? Are stakeholders 

interested in short-term or long-term outcomes? 
Setting What is the clinical setting of interest (e.g., hospital, private practice, community 

health centers, etc.)? 
 

Endpoints	
  
Since the determination of effectiveness is ultimately made by stakeholders, it is important for 
investigators to ensure the study endpoints and outcomes will meet the needs of stakeholders.  
Stakeholders need to articulate to investigators the health outcomes that are most important for a 
particular stakeholder to make decisions about treatment or take other health care actions.  The 
endpoints that stakeholders will use to determine effectiveness may vary considerably.  Unlike 
efficacy trials in which clinical endpoints and surrogate measures are frequently used to 
determine efficacy, effectiveness may need to be determined based on several measures, many of 
which are not biological.  These endpoints may be categorized as clinical, patient reported 
outcomes and quality of life, health resource utilization, and utility measures.  Types of measures 
that could be used are mortality, morbidity and adverse effects, quality-of-life, costs, or multiple 
outcomes.  Chapter 6 gives a more extensive discussion of potential outcome measures of 
effectiveness. 
 
The reliability, validity, and accuracy of study instruments to validly measure the concepts it 
purports to measure will also need to be acceptable to stakeholders.  For instance, if stakeholders 
are interested in quality of life as an outcome, but do not believe there is an adequate measure of 
quality of life, then measurement development may need to be done prior to study initiation or 
other measures will need to be identified by stakeholders. 

Discuss	
  Evidentiary	
  Need	
  and	
  Uncertainty	
  
Investigators and stakeholders should discuss the tradeoffs of different study designs that may be 
used for addressing the research questions.  This dialogue will help researchers design a study 
that will be relevant and useful to the needs of stakeholders.  All study designs have strengths 
and weaknesses, the latter of which may limit the conclusiveness of the final study results.  
Likewise, some decisions may require evidence that cannot be obtained from certain designs.  In 
addition to design weaknesses, there are also practical tradeoffs that need to be considered in 
terms of research resources like the time needed to complete the study, the availability of data, 
investigator expertise, subject recruitment, human subjects protection, research budget, 
difference to be detected, and lost opportunity costs of doing the research instead of other studies 
that have priority for stakeholders.  An important decision that will need to be made is whether 
or not randomization is needed for the questions being studied.  There are several reasons why 
randomization might be needed, such as determining whether an FDA approved drug can be 
used for a new use or indication that was not studied as part of the original drug approval 
process.  A paper by Concato includes a thorough discussion of issues to consider when 
randomization is necessary.11 
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In discussing the tradeoffs of different study designs, researchers and stakeholders may wish to 
discuss the principal goals of research and ensure that researchers and stakeholders are aligned in 
their understanding of what is meant by scientific evidence.  Fundamentally, research is a 
systematic investigation that uses scientific methods to measure, collect, and analyze data for the 
advancement of knowledge.  This advancement is through the independent peer-review and 
publication of study results, which are collectively referred to as scientific evidence.  One 
definition of scientific evidence has been proposed by Normand and McNeil12 as:  
 
“… the accumulation of information to support or refute a … hypothesis that involve inferring 
treatment benefits and harms often within a population that has not been studied.  The idea is that 
assembling all the available information may reduce uncertainty about the effectiveness of the 
new technology compared to existing technologies in a setting where we believe particular 
relationships exist but are uncertain about their relevance.” 
 
While the primary aim of research is to produce new knowledge, the Normand and McNeil 
concept of evidence emphasizes that research helps create knowledge by reducing uncertainty 
about outcomes.  However, rarely, if at all, does research eliminate all uncertainty around most 
decisions.  In some cases, successful research will answer an important question and reduce 
uncertainty as it relates to that question, but it may also increase uncertainty by leading to more, 
better informed questions regarding unknowns.  As a result, nearly all decisions face some level 
of uncertainty even in a field where a body of research has been completed.  This distinction is 
also critical because it helps to separate the research and subsequent actions that decisionmakers 
may take based on their assessment of the research results.  Those subsequent actions may be 
informed by the research findings but will also be based on stakeholders’ values and resources.  
Hence, as the definition by Normand and McNeil implies, research generates evidence but 
stakeholders decide whether to act on the evidence.  Scientific evidence informs decisions to the 
extent it can adequately reduce the uncertainty about the problem for the stakeholder.  
Ultimately, treatment decisions are only guided by assessing the certainty that a course of 
therapy will lead to the outcomes of interest and likelihood that this conclusion will be affected 
by the results of future studies.   
 
In conceptualizing a study design, it is important for investigators to understand what constitutes 
sufficient and valid evidence from the stakeholder’s perspective.  In other words, what is the type 
of evidence that will be required to inform the stakeholder’s decision to act or make a conscious 
decision not to take action?  Evidence needed for action may vary by type of stakeholder and the 
scope of decisions that the stakeholder is making.  For instance, a stakeholder that is making a 
population-based decision such as whether to provide insurance coverage for a new medical 
device with many alternatives may need substantially robust research findings in order to take 
action and provide that insurance coverage.  In this example, the stakeholder may only accept as 
evidence a study with strong internal validity and generalizability (i.e., conducted in a nationally 
representative sample of patients with the disease).  On the other hand, a patient who has a health 
condition where there are few treatments may be willing to accept lower quality evidence in 
order to make a decision about whether to proceed with treatment despite a higher level of 
uncertainty about the outcome. 
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In many cases, there may exist a gradient of actions that can be taken based on available 
evidence.  Quanstrum and Hayward13 have discussed this gradient and argued that health care 
decision making is changing, partly because more information is available to patients and other 
stakeholders about treatment options.  As shown in the upper panel (A) in Figure 1.1, many 
people may currently believe that health care treatment decisions are basically uniform for most 
people and under most circumstances.  Panel A represents a hypothetical treatment whereby 
there is an evidentiary threshold or a point at which treatment is always beneficial and should be 
recommended.  On the other hand, below this threshold, care provides no benefits and treatment 
should be discouraged.  Quanstrum and Hayward argue that increasingly health care decisions 
are more like the lower panel (B).  This panel portrays health care treatments as providing a large 
zone of discretion where benefits may be low or modest for most people.  While above this zone, 
treatment may always be recommended, individuals who fall in the zone may have questionable 
health benefits from treatment.  As a result, different decision makers may take different actions 
based on their individual preferences.   
 
Figure 1.1. Conceptualization of Clinical Decision Making 
 

 
See Quanstrum KH, Hayward RA. Lessons from the mammography wars. N Engl J Med. 2010 Sep 9;363 
(11):1076-9.  This figure is copyrighted by the Massachusetts Medical Society and reprinted with permission. 
 
In light of this illustration, the following are suggested questions to discuss with stakeholders to 
help elicit the amount of uncertainty that is acceptable so that the study design can reach an 
appropriate level of evidence for the decision at hand: 
 
• What level of new scientific evidence is needed by the decisionmaker to make a decision or 

to take action? 
• What quality of evidence is needed for the decisionmaker to act? 
• What level of certainty of the outcome is needed by the decisionmaker(s)? 
• How specific does the evidence need to be? 
• Will decisions require consensus of multiple parties? 
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Additional	
  Considerations	
  When	
  Considering	
  Evidentiary	
  Needs	
  	
  
As mentioned earlier, different stakeholders may disagree in the usefulness of different research 
designs but it should be pointed out that this disagreement may be because stakeholders have 
different scopes of decisions to make.  For example, high quality research that is conclusive may 
be needed to make a decision that will affect the entire nation.  On the other hand, results with 
more uncertainty as to the magnitude of the effect estimate(s) may be acceptable in making some 
decisions such as those affecting fewer people or where the risks to health are low.  Often this 
disagreement occurs when different stakeholders debate whether evidence is needed from a new 
randomized controlled trial or whether evidence can be obtained from an analysis of an existing 
database.  In this debate, both sides clarify whether they are facing the same decision or the 
decisions are different, particularly in terms of their scope. 
 
Groups committed to evidence-based decision making recognize that scientific evidence is only 
one component of the process of making decisions.  Evidence generation is the goal of research, 
but evidence alone is not the only facet of evidence-based decision making.  In addition to 
scientific evidence, decision making involves the consideration of a) values, particularly the 
values placed on benefits and harms, and b) resources.14  Stakeholder differences in values and 
resources may mean that different decisions are made based on the same scientific evidence.  
Moreover, differences in values may create conflict in the decision making process.  One 
stakeholder may believe a particular study outcome is most important from their perspective, 
while another stakeholder may believe a different outcome is the most important for determining 
effectiveness.   
 
Likewise, there may be inherent conflicts in values among individual decision making as 
compared to population decision making even though these decisions are often interrelated.  For 
example, an individual may have a higher tolerance for treatment risk in light of the expected 
treatment benefits for him or her.  On the other hand, a regulatory health authority may 
determine that the population risk is too great without sufficient evidence that treatment provides 
benefits to the population.  An example of this difference in perspective can be seen with how 
different decision makers responded to evidence about the drug Avastin® (bevacizumab) for the 
treatment of metastatic breast cancer.  In this case, the FDA revoked their approval of the breast 
cancer indication for Avastin after concluding that the drug had not been shown to be safe and 
effective for that use.  Nonetheless, Medicare, the public insurance program for the elderly and 
disabled, continued to allow coverage when a physician prescribes the drug, even for breast 
cancer.  Likewise, some patient groups were reported to be concerned by the decision since it 
presumably would deny some women access to Avastin treatment.  For a more thorough 
discussion of these issues around differences in perspective, the reader is referred to an article by 
Atkins15 and the examples in Table 1.3 below. 
 
Table 1.3 Examples of Individual vs. Population Decisions (Adapted from Atkins, 2007)15 

 
Decision Types Decision Example 
Individual Decisions  
  Patient Should I take raloxifene, alendronate, or calcium and vitamin D 

to prevent osteoporosis? 
  Physician / health care professional Should I prescribe treatment X vs. Y? 
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Decision Types Decision Example 
Population Decisions  
 Approval Is slow release sodium fluoride usually safe and effective for 

preventing fractures in comparison with other options? 
 Coverage Which bisphosphonate drugs should be included on a drug 

formulary? 
 Practice guidelines What medications are recommended for initial treatment of 

women at high risk for osteoporosis? 
 Risk management What should a health plan do to minimize the risks associated 

with use of bisphosphonate drugs? 
 Other health system policies Should a health system promote routine screening for 

osteoporosis using ultrasound or dual-energy x-ray 
absorptometry? 

 

Specify	
  Magnitude	
  of	
  Effect	
  	
  
In order for decisions to be objective, it is important for there to be an a priori discussion with 
stakeholders about the magnitude of effect that stakeholders believe represents a meaningful 
difference between treatment options.  Researchers will be familiar with the basic tenet that 
statistically significant differences do not always represent clinically meaningful differences.  
Hence, researchers and stakeholders will need to have knowledge of the instruments that are 
used to measure differences and the accuracy, limitations, and properties of those instruments.  
Three key questions are recommended to use when eliciting from stakeholders the effect sizes 
that are important to them for making a decision or taking action: 
 

• How do patients and other stakeholders define a meaningful difference between 
interventions? 

• How do previous studies and reviews define a meaningful difference? 
• Are patients and other stakeholder interested in superiority or non-inferiority as it relates 

to decision making? 

Challenges	
  to	
  Developing	
  Study	
  Questions	
  and	
  Initial	
  Solutions	
  
In developing CER study objectives and questions, there are some potential challenges that face 
researchers and stakeholders.  The involvement of patients and other stakeholders in determining 
study objectives and questions is a relatively new paradigm, but one that is consistent with 
established principles of translational research.  A key principle of translational research is that 
users need to be involved in research at the earliest stages for the research to be adopted.16  In 
addition, most research is currently initiated by an investigator and traditionally there have been 
few incentives (and some disincentives) to involving others in designing a new research study.  
Although the research paradigm is rapidly shifting,17 there is little information about how to 
structure, process, and evaluate outcomes from initiatives that attempt to engage stakeholders in 
developing study questions and objectives with researchers.  As different approaches are taken to 
involve stakeholders in the research process, researchers will learn how to optimize the process 
of stakeholder involvement and improve the applicability of research to the end users. 
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The bringing together of stakeholders may create some general challenges to the research team.  
For instance, it may be difficult to identify, engage, or manage all stakeholders who are 
interested in developing and using scientific evidence for addressing a problem.  A process that 
allows for public commenting on research protocols through Internet postings may be helpful in 
reaching the widest network of interested stakeholders.  Nevertheless, finding stakeholders who 
can represent all perspectives may not always be practical or available to the study team.  In 
addition, competing interests among stakeholders may make prioritization of research questions 
challenging.  Different stakeholders have different needs and this may make prioritization of 
research difficult.  Nonetheless, as the science of translational research evolves, the collaboration 
of researchers with stakeholders will likely become increasingly the standard of practice in 
designing new research.  
 
To assist researchers and stakeholders with working together, AHRQ has published several 
online resources to facilitate the involvement of stakeholders in the research process.  These 
include a brief guide for stakeholders that highlights opportunities for taking part in AHRQ’s 
Effective Health Care program, a facilitation primer with strategies for working with diverse 
stakeholder groups, a table of suggested tasks for researchers to involve stakeholders in the 
identification and prioritization of future research, and learning modules with slide presentations 
on engaging stakeholders in the Effective Health Care Program.18,19  In addition, AHRQ supports 
the Evidence-base Practice Centers to work with various stakeholders to further develop and 
prioritize the future research needed by decision makers, which are published in a series of 
reports on AHRQ’s website and on the National Library of Medicines’ open-access Bookshelf.20   
 
Likewise, AHRQ supports active involvement of patients and other stakeholders in the AHRQ 
DEcIDE program where different models of engagement have been used.  These models include 
hosting in-person meetings with stakeholders to create research agendas,21,22 developing research 
based on questions poised from public payers like CMS, addressing knowledge gaps that have 
been identified in AHRQ systematic reviews through new research, and supporting five research 
consortia each of which involves researchers, patients, and other stakeholders working together 
to develop, prioritize, and implement research studies.  

Summary	
  and	
  Conclusion	
  
This chapter provides a framework for formulating study objectives and questions when writing 
a research protocol on a CER topic.  Implementation of the framework involves collaboration 
between researchers and stakeholders in conceptualizing the research objectives, questions, and 
the design of the study.  In this process, there is a shared commitment to protect the integrity of 
the research results from bias and conflicts of interest so that the results are valid for informing 
decisions and health  care actions.  Due to the complexity of some health care decisions, the 
evidence needed for decision making or action may need to be developed from multiple studies 
including preliminary research that is the underpinning for larger studies.  The principles 
described in this chapter are intended to strengthen the writing of research protocols and the 
results from the emanating studies for informing the important decisions facing patients, 
providers, and other stakeholders about health care treatments and new technologies.  
Subsequent chapters in this User’s Guide provide specific principles for operationalizing the 
study objectives and research questions in writing a complete study protocol that can be executed 
as new research. 
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  	
  for	
  Developing	
  Study	
  Objectives	
  and	
  Questions	
  for	
  
Observational	
  CER	
  Protocols	
  or	
  Proposals	
  	
  
 

Guidance Key Considerations Check 
Characterize the primary uses and users of the 
scientific evidence that will be generated by the 
study (stakeholders), and how the evidence may be 
used 

- Explain specific stakeholder decisions or actions that will 
potentially be informed by the study results 

- Describe the evidentiary need of the stakeholders  

Articulate the main study objectives in terms of a 
highly specific research question or set of related 
questions that the study will answer 
 

- Write research questions by identifying the population, 
intervention, comparator, outcomes, timing, and settings of 
interest to the decision makers (PICOTS) 

- Discuss operational definitions and measures to meet the 
study objectives with stakeholders 

 

Synthesize the literature and characterize the 
known effects of the exposures and interventions 
on patient outcomes. 

 
	
  

Provide a conceptual framework  - Describe hypothesized relationships between interventions 
and outcomes and key covariates 

- Include appropriate figures or diagrams as needed 
 

Delineate study limitations that stakeholders and 
investigators are willing to accept a priori 

  

Describe the meaningful magnitude of change in 
the outcomes of interest as defined by stakeholders 

- Provide rationale for why a particular difference is 
hypothesized to be meaningful 

- Discuss differences that may exist among stakeholders in 
terms of what is meaningful to different stakeholders 
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Chapter	
  2.	
  Study	
  Design	
  Considerations	
  	
  

Abstract	
  
The choice of study design often has profound consequences for the causal interpretation of 
study results.  The objective of this chapter is to provide an overview of various study design 
options for nonexperimental CER, their relative advantages and limitations, and provide 
information to guide the selection of an appropriate study design for a research question of 
interest.  We begin the chapter by reviewing the potential for bias in nonexperimental studies and 
the central assumption needed for nonexperimental CER, i.e., that treatment groups compared 
have the same underlying risk for the outcome within subgroups definable by measured 
covariates (no unmeasured confounding).  Commonly used cohort and case-control study designs 
are then described, along with other designs relevant to CER such as case cohort designs 
(selecting a random sample of the cohort and all cases), case-crossover designs (using prior 
exposure history of cases as their own controls), case-time controlled designs (dividing the case-
crossover odds ratio by the equivalent odds ratio estimated in controls to account for calendar 
time trends), and self-controlled case series (estimating the immediate effect of treatment in 
those treated at least once).  Selecting the appropriate data source, patient population, 
inclusion/exclusion criteria, and comparators are discussed as critical design considerations.  
Employing a new user design, which allows adjustment for confounding at treatment initiation 
without the concern of mixing confounding with selection bias during followup, and recognizing 
and avoiding immortal time bias, which is introduced by defining the exposure during the 
followup time versus prior to followup, are also described.  The chapter concludes with a 
checklist for the development of the study design section of a CER protocol or proposal, 
emphasizing the provision of a rationale for study design selection and the need for clear 
definitions of inclusion/exclusion criteria, exposures (treatments), outcomes, confounders, and 
start of followup or risk period. 

Introduction	
  
The objective of this chapter is to provide an overview of various study design options for 
nonexperimental CER and their relative advantages and limitations.  Out of the multitude of 
epidemiologic design options, we will focus on observational designs that compare two or more 
treatment options with respect to an outcome of interest where treatments are not assigned by the 
investigator but according to routine medical practice.  We will not cover experimental or quasi-
experimental designs, such as interrupted time series,1 designed delays,2 cluster randomized 
trials, individually randomized trials, pragmatic trials, or adaptive trials.  These designs also have 
important roles in CER; however the focus of this guide is on nonexperimental approaches to 
directly compare treatment options.   
 
The choice of study design often has profound consequences for the causal interpretation of 
study results that are irreversible in many settings.  Study design decisions must therefore be 
considered even more carefully than analytic decisions, which can often be changed and adapted 
at later stages of the research project.  Those unfamiliar with nonexperimental design options are 
thus strongly encouraged to involve experts in the design of nonexperimental treatment 
comparisons, e.g., epidemiologists, especially ones that are familiar with comparing medical 
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treatments (e.g., pharmacoepidemiologists) during the planning stage of CER studies and 
throughout the project. In the planning stage of a CER study, researchers need to determine 
whether the research question should be studied using nonexperimental or experimental methods 
(or a combination thereof, e.g., 2-stage RCTs).3,4  Feasibility may determine whether an 
experimental or a nonexperimental design is most suitable; situations may arise where neither 
approach is feasible. 

Issues	
  of	
  Bias	
  in	
  Observational	
  CER	
  
In observational CER, the exposures or treatments are not assigned by the investigator but rather 
by mechanisms of routine practice. Although the investigator can (and should) speculate on the 
treatment assignment process or mechanism, the actual process will be unknown to the 
investigator. The nonrandom nature of treatment assignment leads to the major challenge in 
nonexperimental CER studies, ensuring internal validity. Internal validity is defined as the 
absence of bias; biases may be broadly classified as selection bias, information bias, and 
confounding bias. Epidemiology has advanced our thinking about these biases for more than 
100 years, and many papers describing the underlying concepts and approaches to bias reduction 
have been published. For a comprehensive description and definition of these biases we suggest 
the book Modern Epidemiology.5  Ensuring a study’s internal validity is a prerequisite for its 
external validity or generalizability. The limited generalizability of findings from randomized 
controlled trials (RCTs), e.g., to older adults, patients with comorbidities or comedications, is 
one of the major drivers for the conduct of nonexperimental CER. 
 
The central assumption needed for nonexperimental CER is that the treatment groups compared 
have the same underlying risk for the outcome within subgroups definable by measured 
covariates.  Until recently this “no unmeasured confounding” assumption was deemed plausible 
only for unintended (usually adverse) effects of medical interventions, i.e., safety studies.  The 
assumption was considered to be less plausible for intended effects of medical interventions 
(effectiveness) because of intractable confounding by indication.6,7  Confounding by indication 
leads to higher propensity for treatment or more intensive treatment in those with the most severe 
disease.  A typical example would be a study on the effects of beta-agonists on asthma mortality 
in patients with asthma.  The association between treatment (intensity) with beta-agonists and 
asthma mortality would be confounded by asthma severity.  The direction of the confounding by 
asthma severity would tend to make the drug look bad (as if it is “causing” mortality).  The study 
design challenge in this example would not be the confounding itself, but that it is hard to control 
for asthma severity because it is difficult to measure precisely.  Confounding by frailty has been 
identified as another potential bias when assessing preventive treatments in population-based 
studies, particularly those among older adults.8,9,10,11  Because frail persons (close to death) are 
less likely to be treated with a multitude of preventive treatments,8 frailty would lead to 
confounding which would bias the association between preventive treatments and outcomes 
associated with frailty (e.g., mortality). Since the bias would be that the untreated cohort has a 
higher mortality irrespective of the treatment, this would make the drug’s effectiveness look too 
good.  Here again the crux of the problem is that frailty is hard to control for because it is 
difficult to measure. 
 



	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Chapter 2. Study Design Considerations 
 

Page 38 of 228 
 

Basic	
  Epidemiologic	
  Study	
  Designs	
  
The general principle of epidemiologic study designs is to compare the distribution of the 
outcome of interest in groups characterized by the exposure/treatment/intervention of interest. 
The association between the exposure and outcome is then assessed using measures of 
association. The causal interpretation of these associations is dependent on additional 
assumptions, most notably that the risk for the outcome is the same in all treatment groups 
compared (before they receive the respective treatments), also called exchangeability.12,13 
Additional assumptions for a causal interpretation, starting with the Hill criteria,14 are beyond the 
scope of this chapter, although most of these are relevant to many CER settings (i.e., when 
treatment effects are heterogeneous, see chapter 3).  
 
The basic epidemiologic study designs are usually defined by whether study participants are 
sampled based on their exposure or outcome of interest.  In a cross sectional study, participants 
are sampled independent of exposure and outcome and prevalence of exposure and outcome are 
assessed at the same point in time.  In cohort studies, participants are sampled according to their 
exposures and followed over time for the incidence of outcomes.  In case-control studies, cases 
and controls are sampled based on the outcome of interest and the prevalence of exposure in 
these two groups is then compared.  Because the cross-sectional study design usually does not 
allow the investigator to define whether the exposure preceded the outcome, one of the 
prerequisites for a causal interpretation, we will focus on cohort and case-control studies as well 
as some more advanced designs with specific relevance to CER. 
 
Definitions of some common epidemiologic terms are presented in Table 2.1.  Given the space 
constraints and the intended audience, these definitions do not capture all nuances.  
 
Table 2.1. Definition of epidemiologic terms 
 
Term Definition Comments 

Incidence Occurrence of the disease outcome over a 
specified time period. Incidence is generally 
assessed as a risk/proportion over a fixed time-
period (e.g., risk for 1-year mortality) or as a 
rate defined by persons and time (e.g., 
mortality rate per person-year). Incidence is 
often defined as first occurrence of the 
outcome of interest which requires prior 
absence of the outcome. 

Etiologic studies are based on incidence of 
the outcome of interest rather than 
prevalence because prevalence is a function 
of disease incidence and duration of disease. 
 

Prevalence Proportion of persons with the 
exposure/outcome at a specific point in time. 
Because prevalence is a function of the 
incidence and the mean duration of the disease, 
incidence is generally used to study etiology. 
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Term Definition Comments 
Measures of 
association 

Needed to compare outcomes across treatment 
groups. The main epidemiologic measures of 
association are ratio measures (risk ratio, 
incidence rate ratio, odds ratio, hazard ratio) 
and difference measures (risk difference, 
incidence rate difference). 

Difference measures have some very 
specific advantages over ratio measures, 
including the possibility to calculate 
numbers needed to treat (or harm) and 
providing a biologically more meaningful 
scale to assess heterogeneity.5 Ratio 
measures nevertheless abound in medical 
research. All measures of association should 
be accompanied by a measure of precision, 
e.g., a confidence interval. 

Confounding Mixing of effects; the effect of the treatments 
is mixed with the effect of the underlying risk 
for the outcome being different in the 
treatment groups compared. 

Leads to biased treatment effect estimates 
unless controlled for by design 
(randomization, matching, restriction) or 
analysis (stratification, multivariable 
models). 

Selection bias Distortion of treatment effect estimate as a 
result of procedures used to select subjects and 
from factors that influence study participation.  

While procedures to select subjects usually 
lead to confounding that can be controlled 
for, factors affecting study participation 
cannot be controlled for; factors affecting 
study participation are referred to as 
selection bias throughout this chapter to 
differentiate it from confounding. 

Information 
bias 

Distortion of treatment effect estimate as a 
result of measurement error in any variable 
used in a study, i.e., exposure, confounder, 
outcome. 

Often measurement error is used for 
continuous variables and misclassification 
for categorical variables; it is important to 
separate nondifferential from differential 
measurement error; nondifferential 
measurement error in exposures and 
outcomes tends to bias treatment effect 
estimates towards the null (no effect); 
nondifferential measurement error in 
confounders leads to residual confounding 
(any direction); differential measurement 
error leads to bias in any direction. 

 

Cohort	
  Study	
  	
  

Description	
  
Cohorts are defined by their exposure at a certain point in time (baseline date) and are followed 
over time after baseline for the occurrence of the outcome.  For the usual study of first 
occurrence of outcomes, cohort members with the outcome prevalent at baseline need to be 
excluded.  Cohort entry (baseline) is ideally defined by a meaningful event (e.g., initiation of 
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treatment; see section on new user design) rather than convenience (prevalence of treatment) 
although this may not always be feasible or desirable. 

Advantages	
  
The main advantage of the cohort design is that it has a clear timeline separating potential 
confounders from the exposure and the exposure from the outcome.  Cohorts allow the 
estimation of actual incidence (risk or rate) in all treatment groups and thus the estimation of risk 
or rate differences.  Cohort studies allow investigators to assess multiple outcomes from given 
treatments.  The cohort design is also easy to conceptualize and readily compared to the RCT, a 
design with which most medical researchers are very familiar. 

Limitations	
  
If participants need to be recruited and followed over time for the incidence of the outcome, the 
cohort design quickly becomes inefficient when the incidence of the outcome is low. This has led 
to the widespread use of case-control designs (see below) in pharmacoepidemiologic studies 
using large automated databases.  With the IT revolution over the past 10 years, lack of 
efficiency is rarely, if ever, a reason not to implement a cohort study even in the largest health 
care databases if all data have already been collected. 

Important	
  considerations	
  
Patients can only be excluded from the cohort based on information available at start of followup 
(baseline). Any exclusion of cohort members based on information accruing during followup, 
including treatment changes, has a strong potential to introduce bias.  The idea to have a “clean” 
treatment group usually introduces selection bias, e.g., by removing the sickest, those with 
treatment failure, or those with adverse events, from the cohort.  The fundamental principle of 
the cohort is the enumeration of people at baseline (based on inclusion and exclusion criteria) 
and reporting losses to followup for everyone enrolled at baseline.  Clinical researchers may also 
be tempted to assess the treatments during the same time period the outcome is assessed (i.e., 
during followup) instead of prior to followup.  Another fundamental of the cohort design is, 
however, that the exposure is assessed prior to the assessment of the outcome, thus limiting the 
potential for reverse causality.  This general principle also applies to time-varying treatments for 
which the followup time needs to start new after treatment changes rather than from baseline.  
 
Cadarette et al.15 employed a cohort design to investigate the comparative effectiveness of four 
alternative treatments to prevent osteoporotic fractures.  The four cohorts were defined by the 
initiation of the four respective treatments (baseline date).  Cohorts were followed from baseline 
to the first occurrence of a fracture at various sites.  Statistical analyses adjusted for risk factors 
for fractures assessed at baseline to minimize bias.  As discussed, the cohort design provided a 
clear timeline, differentiating exposure from potential confounders and the outcomes.   

Case-­‐control	
  Study	
  

Description	
  
Nested within an underlying cohort, the case-control design identifies all incident cases that 
develop the outcome of interest and compares their exposure history with the exposure history of 
controls sampled at random from everyone within the cohort that is still at risk for developing the 
outcome of interest. Given proper sampling of controls from the risk set, the estimation of the 
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odds ratio in a case-control study is a computationally more efficient way to estimate the 
otherwise identical incidence rate ratio in the underlying cohort. 

Advantages	
  
The oversampling of persons with the outcome increases efficiency compared with the full 
underlying cohort. As outlined above, this efficiency advantage is of minor importance in many 
CER settings. Efficiency is of major importance, however, if additional data (e.g., blood levels, 
biologic materials, validation data) need to be collected. It is straightforward to assess multiple 
exposures, although this will quickly become very complicated when implementing a new user 
design.  

Limitations	
  
The case-control study is difficult to conceptualize. Some researchers do not understand, for 
example, that matching does not control for confounding in a case-control study, whereas it does 
in a cohort study.16  Unless additional information from the underlying cohort is available, risk or 
rate differences cannot be estimated from case-control studies. Because the timing between 
potential confounders and the treatments is often not taken into account, current implementations 
of the case control design assessing confounders at the index date rather than prior to treatment 
initiation will be biased when controlling for covariates that may be affected by prior treatment. 
Thus, implementing a new user design with proper definition of confounders will often be 
difficult, although not impossible. If information on treatments needs to be obtained 
retrospectively, e.g., from an interview with study participants identified as cases and controls, 
there is the potential that treatments will be assessed differently for cases and controls which will 
lead to bias (often referred to as recall bias). 

Important	
  considerations	
  
Controls need to be sampled from the “risk set”, i.e., all patients from the underlying cohort who 
remain at risk for the outcome at the time a case occurs. Sampling of controls from all those who 
enter the cohort (i.e., at baseline) may lead to biased estimates of treatment effects if treatments 
are associated with loss to followup or mortality. Matching on confounders can improve the 
efficiency of estimation of treatment effects, but does not control for confounding in case control 
studies. Matching should only be considered for strong risk factors for the outcome; however, the 
often small gain in efficiency must be weighed against the loss of the ability to estimate the 
effect of the matching variable on the outcome (which could, for example, be used as a positive 
control to show content validity of an outcome definition).17  Matching on factors strongly 
associated with treatment often reduces efficiency of case control studies (overmatching). 
Generally speaking, matching should not routinely be performed in case-control studies but be 
carefully considered, ideally after some study of the expected efficiency gains.16,18 
 
Martinez et al.19 conducted a case-control study employing a new user design.  The investigators 
compared venlafaxine and other antidepressants and risk of sudden cardiac death or near death. 
An existing cohort of new users of antidepressants was identified (“new” users were defined as 
subjects without a prescription for the medication in the year prior to cohort entry). Nested 
within the underlying cohort, cases and up to 30 randomly selected matched controls were 
identified. Potential controls were assigned an “index date” corresponding to the same followup 
time to event as the matched case.  Controls were only sampled from the “risk set”; i.e., controls 
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had to be at risk for the outcome on their index date, thus ensuring that bias was not introduced 
via the sampling scheme. 

Case	
  Cohort	
  Study	
  
In the case-cohort design, cohorts are defined as in a cohort study, and all cohort members are 
followed for the incidence of the outcomes.  Additional information required for analysis (e.g., 
blood levels, biologic materials for genetic analyses) is collected for a random sample of the 
cohort and for all cases (note that the random sample may contain cases). This sampling needs to 
be accounted for in the analysis20, but otherwise this design offers all the advantages and 
possibilities of a cohort study. The case-cohort design is intended to increase efficiency 
compared with the nested case-control design when selecting participants for whom additional 
information needs to be collected or when studying more than one outcome.  

Other	
  Epidemiological	
  Study	
  Designs	
  Relevant	
  to	
  CER	
  

Case-­‐crossover	
  Design	
  
Faced with the problem of selection of adequate controls in a case-control study of triggers of 
myocardial infarction, Maclure proposed to use prior exposure history of cases as their own 
controls.21  For this study design, only patients with the outcome (cases) who have discrepant 
exposures during the case and the control period contribute information. A feature of this design 
is that it is self-controlled, which removes the confounding effect of any characteristic of 
subjects that are stable over time (e.g., genetics). For CER, the latter property of the case-
crossover design is a major advantage because measures of stable confounding factors (to 
address confounding) are not needed. The former property or initial reason to develop the case-
crossover design, i.e. its ability to assess triggers of (or immediate, reversible effects of e.g., 
treatments on) outcomes may also have specific advantages for CER.  The case crossover design 
is thought to be appropriate for studying acute effects of transient exposures. 

Description	
  
Exactly as in a case-control study, the first step is to identify all cases with the outcome and 
assess the prevalence of exposure during a brief time window before the outcome occurred. 
Instead of sampling controls, we create a separate observation for each case that contains all the 
same variables except for the exposure, which is defined for a different time period. This 
“control” time period has the same length as the case period and needs to be carefully chosen to 
take e.g., seasonality of exposures into account. The dataset is then analyzed as an individually 
matched case-control study. 

Advantages	
  
The lack of need to select controls, the ability to assess short-term reversible effects, the ability 
to inform about the time window for this effect using various intervals to define treatment, and 
the control for all, even unmeasured factors that are stable over time are the major advantages of 
the case-crossover design. The design can also be easily added to any case-control study with 
little (if any) cost.  
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Limitations	
  
Because only cases with discrepant exposure history contribute information to the analysis, the 
case-crossover design is often not very efficient. This may not be a major issue if the design is 
used in addition to the full case-control design. While the design avoids confounding by factors 
that are stable over time, it can still be confounded by factors that vary over time. The possibility 
of time-varying conditions leading to changes in treatment and increasing the risk for the 
outcome (i.e., confounding by indication) would need to be carefully considered in CER studies. 
 
The causal interpretation changes from the effect of treatment versus no treatment on the 
outcome to the short term effect of treatment in those treated. Thus, it can be used to assess the 
effects of adherence/persistence with treatment on outcomes in those who have initiated 
treatment.22 

Case-­‐time	
  Controlled	
  Design	
  
One of the assumptions behind the case-crossover design is that the prevalence of exposure stays 
constant over time in the population studied. While plausible in many settings, this assumption 
may be violated in dynamic phases of therapies (after market introduction or safety alerts). To 
overcome this problem, Suissa proposed the case-time controlled design.23  This approach 
divides the case-crossover odds ratio by the equivalent odds ratio estimated in controls. 
Greenland has criticized this design because it can re-introduce confounding, thus detracting 
from one of the major advantages of the case-crossover design.24  

Description	
  
This study design tries to adjust for calendar time trends in the prevalence of treatments which 
can introduce bias in the case-crossover design. To do so, the design uses controls as in a case-
control design but estimates a case-crossover odds ratio (i.e., within individuals) in these 
controls. The case-crossover odds ratio (in cases) is then divided by the case-crossover odds ratio 
in controls. 

Advantages	
  
This design is the same as case-crossover design (with the caveat outlined by Greenland) with 
the additional advantage of not being dependent on the assumption of no temporal changes in the 
prevalence of the treatment. 

Limitations	
  
The need for controls removes the initial motivation for the case-crossover design and adds 
complexity. The control for the time trend can introduce confounding although the magnitude of 
this problem for various settings has not been quantified. 

Self-­‐controlled	
  Case-­‐series	
  	
  
Some of the concepts of the case-crossover design have also been adapted to cohort studies. This 
design, called self-controlled case-series25, shares most of the advantages with the case-crossover 
design, but requires additional assumptions. 
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Description	
  
As with the case-crossover design, the self-controlled case series estimates the immediate effect 
of treatment in those treated at least once. It is similarly dependent on cases that have changes in 
treatment during a defined period of observation time. This observation time is divided into 
treated person-time, a washout period of person-time, and untreated person-time. A conditional 
Poisson regression is used to estimate the incidence rate ratio within individuals. A SAS macro 
with software to arrange the data and to run the conditional Poisson regression is available.26,27 

Advantages	
  
The self-controlled design controls for factors that are stable over time. The cohort design, using 
all the available person-time information, has the potential to increase efficiency compared with 
the case-crossover design. The design was originally proposed for rare adverse events in vaccine 
safety studies for which it seems especially well suited. 

Limitations	
  
The need for repeated events or, alternatively, a rare outcome, and the apparent need to assign 
person-time for treatment even after the outcome of interest occurs, limits the applicability of the 
design in many CER settings. The assumption that the outcome does not affect treatment will 
often be implausible. Furthermore, it precludes the study of mortality as an outcome. The reason 
why treatment information after the outcome is needed is not obvious to us and this issue needs 
further study. More work is needed to understand the relation of the self-controlled case-series 
with the case-crossover design and to delineate relative advantages and limitations of these 
designs for specific CER settings. 

Study	
  Design	
  Features	
  

Study	
  Setting	
  
One of the first decisions with respect to study design is consideration of the population and data 
source(s) from which the study subjects will be identified. Usually, the general population or a 
population-based approach is preferred but selected populations (e.g., a drug/device or disease 
registry) may offer advantages such as availability of data on covariates in specific settings. 
Availability of existing data and their scope and quality will determine whether a study can be 
done using existing data or whether additional new data need to be collected (see chapter 8 for a 
full discussion of data sources). Researchers should start with a definition of the treatments and 
outcomes of interest, as well as the predictors of outcome risk potentially related to choice of 
treatments of interest (i.e., potential confounders).  Once these have been defined, availability 
and validity of information on treatments, outcomes, and confounders in existing databases 
should be weighed against the time and cost involved in collecting additional or new data. This 
process is iterative insofar that availability and validity of information may inform the definition 
of treatments, outcomes, and potential confounders. We need to point out that we do not make 
the distinction between retrospective and prospective studies here because this distinction does 
not affect the validity of the study design. The only difference between these general options of 
how to implement a specific study design lies in the potential to influence what kind of data will 
be available for analysis. 
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Inclusion	
  and	
  Exclusion	
  Criteria	
  
Every CER study should have clearly defined inclusion and exclusion criteria.  The definitions 
need to include details about the study time period and dates used to define these criteria. Great 
care should be taken to use uniform periods to define these criteria for all subjects. If this cannot 
be achieved, then differences in periods between treatment groups need to be carefully evaluated 
because such differences have the potential to introduce bias. Inclusion and exclusion criteria 
need to be defined based on information available at baseline and cannot be updated based on 
accruing information during followup (see discussion of immortal time below). 
 
Inclusion and exclusion criteria can also be used to increase internal validity of nonexperimental 
studies.  Consider an example where an investigator suspects that an underlying comorbidity is a 
confounder of the association under study.  A diagnostic code with a low sensitivity but high 
specificity for the underlying comorbidity exists (i.e., many subjects with the comorbidity aren’t 
coded; however, for patients that do have the code, nearly all have the comorbidity).  In this 
example, the investigator’s ability to control for confounding by the underlying comorbidity 
would be hampered by the low sensitivity of the diagnostic code (as there are potentially many 
subjects with the comorbidity that are not coded).   In contrast, restricting the study population to 
those with the diagnostic code removes confounding by the underlying condition due to the high 
specificity of the code.  
 
It should be noted that inclusion and exclusion criteria also affect generalizability of results. If in 
doubt, potential benefits in internal validity will outweigh any potential reduction in 
generalizability.   

Choice	
  of	
  Comparators	
  
Both confounding by indication and confounding by frailty may be strongest and most difficult 
to adjust for when comparing treated with untreated persons. One way to reduce the potential for 
confounding is to compare the treatment of interest with a different treatment for the same 
indication or an indication with a similar potential for confounding.28  A comparator treatment 
within the same indication is likely to reduce the potential for bias from both confounding by 
indication and confounding by frailty. This opens the door for using nonexperimental methods to 
study intended effects of medical interventions (effectiveness). Comparing different treatment 
options for a given patient (i.e., the same indication) is at the very core of CER. Thus both 
methodological and clinical relevance considerations lead to the same principle for study design.  
  
Another beneficial aspect of choosing an active comparator group comprised of a treatment 
alternative for the same indication is the identification of the point in time when the treatment 
decision is made, so that all subjects may start followup at the same time, “synchronizing” both 
the timeline and the point at which baseline characteristics are measured. This reduces the 
potential for various sources of confounding and selection bias, including by barriers to treatment 
(e.g., frailty).8,29 A good source for active comparator treatments are current treatment guidelines 
for the condition of interest.  
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Other	
  Study	
  Design	
  Considerations	
  

New	
  User	
  Design	
  
It has long been realized that the biologic effects of treatments may change over time since 
initiation.30  Guess used the observed risk of angioedema after initiation of angiotensin 
converting enzyme inhibitors, which is orders of magnitude higher in the first week after 
initiation compared with subsequent weeks31, to make the point. Nonbiologic changes of 
treatment effects over time since initiation may also be caused by selection bias.8,29,32  For 
example, Dormuth et al.32 examined the relationship between adherence to statin therapy (more 
adherent versus less adherent) and a variety of outcomes thought to be associated with and not 
associated with statin use.  The investigators found that subjects classified as more adherent were 
less likely to experience negative health outcomes unlikely to be caused by statin treatment.   
 
Poor health (e.g., frailty) is also associated with nonadherence in RCTs33 and thus those adhering 
to randomized treatment will appear to have better outcomes, including those adhering to 
placebo.33  This selection bias is most pronounced for mortality34, but extends to a wide variety 
of outcomes, including accidents.31  The conventional prevalent user design thus is prone to 
suffer from both confounding and selection bias. While confounding by measured covariates can 
usually be addressed by standard epidemiologic methods, selection bias cannot. An additional 
problem of studying prevalent users is that covariates that act as confounders may also be 
influenced by prior treatment (e.g., blood pressure, asthma severity, CD4 count); in such a 
setting, necessary control for these covariates to address confounding will introduce bias because 
some of the treatment effect is removed. 
 
The new user design6,30,31,35,36 is the logical solution to the problems resulting from inclusion of 
persons who are persistent with a treatment over prolonged periods because researchers can 
adjust for confounding at initiation without the concern of selection bias during followup. 
Additionally, the approach avoids the problem of confounders potentially being influenced by 
prior treatment, and provides approaches for structuring comparisons which are free of selection 
bias, such as first treatment carried forward or intention to treat.  These and other considerations 
are covered in further detail in chapter 5.  In addition, the new user design offers a further 
advantage in anchoring the time scale for analysis at time since initiation of treatment for all 
subjects under study. Advantages and limitations of the new user design are clearly outlined in 
the paper by Ray.36  Limitations include the reduction in sample size leading to reduced 
precision of treatment effect estimates and the potential to lead to a highly selected population 
for treatments often used intermittently (e.g., pain medications).37  Given the conceptual 
advantages of the new user design to address confounding and selection bias, it should be the 
default design for CER studies; deviations should be argued for and their consequences 
discussed. 

Immortal	
  Time	
  Bias	
  
While the term “immortal time bias” was introduced by Suissa in 200338, the underlying bias 
introduced by defining the exposure during the followup time rather than before followup was 
first outlined by Gail.39  Gail noted that the survival advantage attributed to getting a heart 
transplant in two studies enrolling cohorts of potential heart transplant recipients was a logical 
consequence of the study design. The studies compared survival in those that later got a heart 
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transplant with those that did not, starting from enrollment (getting on the heart transplant list). 
As one of the conditions to get a heart transplant is survival until the time of surgery, this 
survival time prior to the exposure classification (heart transplant or not) should not be attributed 
to the heart transplant and is described as “immortal”. Any observed survival advantage in those 
who received transplants cannot be clearly ascribed to the intervention if time prior to the 
intervention is included because of the bias introduced by defining the exposure at a later point 
during followup. Suissa38 showed that a number of pharmacoepidemiologic studies assessing 
the effectiveness of inhaled corticosteroids in chronic obstructive pulmonary disease were also 
affected by immortal time bias.  While immortal person time and the corresponding bias is 
introduced whenever exposures (treatments) are defined during followup, immortal time bias can 
also be introduced by exclusion of patients from cohorts based on information accrued after the 
start of followup (i.e., based on changes in treatment or exclusion criteria during followup). 
 
It should be noted that both the new user design and the use of comparator treatments reduce the 
potential for immortal time bias. These design options are no guarantee against immortal time 
bias, however, unless the corresponding definitions of cohort inclusion and exclusion criteria are 
based exclusively on data available at start of followup (i.e., at baseline).40  

Conclusion	
  
This chapter provides an overview of advantages and limitations of various study designs 
relevant to CER. It is important to realize that many see the cohort design as more valid than the 
case-control design.  Although the case-control design may be more prone to potential biases 
related to control selection and recall in ad hoc studies, if a case-control study is nested within an 
existing cohort (e.g., based within a large health care database) its validity is equivalent to the 
one of the cohort study under the condition that the controls are sampled appropriately and the 
confounders are assessed during the relevant time period (i.e., before the treatments). Because 
the cohort design is generally easier to conceptualize, implement, and communicate, and 
computational efficiency will not be a real limitation in most settings, the cohort design will be 
preferred when data have already been collected. The cohort design has the added advantage that 
absolute risks or incidence rates can be estimated and therefore risk or incidence rate differences 
can be estimated, which have specific advantages as outlined above. While we would always 
recommend including an epidemiologist in the early planning phase of a CER study, an 
experienced epidemiologist would be a prerequisite outside of these basic designs. 
 
Some additional study designs have not been discussed. These include hybrid designs like 2-
stage studies,41 validation studies,42 ecologic designs arising from natural experiments, 
interrupted time series, adaptive designs, and pragmatic trials.  Many of the issues that will be 
discussed in the following chapters about how to deal with treatment changes (stopping, 
switching, and augmenting) will also need to be addressed in pragmatic trials because their 
potential to introduce selection bias will be the same in both experimental and nonexperimental 
studies. 
 
Knowledge of study designs and design options is essential to increase internal and external 
validity of nonexperimental CER studies. An appropriate study design is a prerequisite to reduce 
the potential for bias. Biases introduced by suboptimal study design cannot usually be removed 
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during the statistical analysis phase. Therefore the choice of an appropriate study design is at 
least as important, if not more important, than the approach to statistical analysis. 
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Study	
  Design	
  for	
  an	
  Observational	
  CER	
  protocol	
  or	
  proposal	
  
 

Guidance Key Considerations Check 
Provide rationale for 
study design  choice 
and describe key 
design features 

- Cohort study proposals should clearly define cohort entry date (baseline date), employ a 
new user design (or provide rationale for including prevalent users), and plans for reporting 
losses to followup 

-  Case-control study proposals should clearly describe the control sampling method, employ 
a new user design (or provide a rationale for assessing confounders at index date), and 
assess potential for recall bias (if applicable) 

- Case-cohort study proposals should include how the sampling scheme will be accounted for 
during analysis 

- Case-crossover study proposals should discuss the potential for confounding by time-
varying factors, and clearly state how the resulting effect estimate can be interpreted  

- Case-time controlled study proposals should clearly weigh the pros and cons of accounting 
for calendar trends in the prevalence of exposure 

 

Define start of 
followup (baseline) 

- The time point for start of followup should be clearly defined and meaningful, ideally 
anchored to the time of a medical intervention (e.g., initiation of drug use) 

- If alternative approaches are proposed, the rationale should be provided and implications 
discussed 

 

Define inclusion and 
exclusion criteria at 
start of followup 
(baseline) 

- Exclusion and inclusion criteria should be defined at the start of followup (baseline) and 
solely based on information available at this point in time (i.e., ignoring potentially known 
events after baseline). 

- The definition should include the time window for assessment (usually the same for all 
cohort members) 

 

Define exposure 
(treatments) of interest 
at start of followup 

 
 

Define outcome(s) of 
interest  

- Provide information on measures of accuracy if possible  
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Guidance Key Considerations Check 
Define potential 
confounders 

- Potential confounders known to be associated with treatment and outcome should be pre-
specified when possible 

- Confounders should be assessed prior to exposure or treatment initiation to ensure they are 
not affected by the exposure 

- Approaches to empirical identification of confounders should be described if planned 
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Chapter	
  3.	
  Estimation	
  and	
  Reporting	
  of	
  Heterogeneity	
  of	
  Treatment	
  
Effects	
  	
  

Abstract	
  
Patient populations within a research study are heterogeneous in terms of characteristics that 
vary between individuals such as age, sex, disease etiology and severity, presence of 
comorbidities, concomitant exposures, and genetic variants. These patient characteristics can 
potentially modify the effect of a treatment on outcomes.  Despite this heterogeneity, many 
studies estimate an average treatment effect (ATE). The treatment effect within subgroups may 
vary considerably from the ATE, however, as differences may arise from an underlying causal 
mechanism or may be due to artifacts of measurements or methods (e.g., chance, bias, or 
confounding).  Heterogeneity of treatment effect (HTE) is the nonrandom, explainable variability 
in the direction and magnitude of treatment effects for individuals within a population. The main 
goals of HTE analysis are to estimate treatment effects in clinically relevant subgroups and to 
predict whether an individual might benefit from a treatment. Subgroup analysis is the most 
common analytic approach for examining HTE. Selection of subgroups should be based on 
mechanism and plausibility, taking into account prior knowledge on treatment effect modifiers. 
This chapter focuses on defining and describing HTE and how to evaluate and report such 
heterogeneous effects using subgroup analysis. Understanding HTE is critical for decisions that 
are based on knowing how well a treatment is likely to work for an individual or group of similar 
individuals, and is relevant to most stakeholders, including patients, clinicians, and policy 
makers. The chapter concludes with a checklist of key considerations for discussion of HTE and 
addressing planned subgroup analysis in an observational CER protocol or proposal. 
 
“If it were not for the great variability between individuals, medicine might as well be a science, 
not an art” (William Osler, 1892).  

Introduction	
  	
  
Randomized controlled trials (RCTs) and observational studies of comparative effectiveness 
usually report an average treatment effect (ATE), even though experience suggests that the same 
treatment can have varying impacts in different people.  The clinical experience and expectation 
that differences in patient prognostic characteristics will lead to heterogeneous responses to 
therapy is mainly why medicine is as much an art as it is science.  Yet, studies tend to emphasize 
a single measure of the impact of treatment, the ATE, which is a summary of individual 
treatment effects (which cannot be examined directly).  Variation is often undesirable in studies 
and is reduced by excluding people with characteristics that are thought to cause variations in 
responses to treatment.  This intentional restriction in patient heterogeneity within RCTs 
contributes to their limited generalizability.  Determining whether a treatment works for people 
in a target population that differs from the study population requires additional information and 
methods.1   

Heterogeneity	
  of	
  Treatment	
  Effect	
  
All studies have variability in the data.  Random variability is generally not concerning because 
it is uncorrelated with explanatory variables, and can be handled well with statistical approaches 
for quantifying uncertainty.  We focus on the nonrandom variability in treatment effects that can 
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be attributed to patient factors.  We define HTE as nonrandom variability in the direction or 
magnitude of a treatment effect, where the effect is measured using clinical outcomes (either a 
clinical event such as myocardial infarction or a change in a continuous clinical measure such as 
level of pain).2   
 
Understanding HTE is critical for decisions that are based on knowing how well a treatment is 
likely to work for an individual or group of similar individuals and is relevant to stakeholders 
including patients, clinicians, and policy makers.  It also has implications for applicability of 
findings from pragmatic trials and observational comparative effectiveness research (CER) to 
individual patients (personalized medicine).  Pragmatic trials are large and simple experiments of 
treatments with broad eligibility criteria from which evidence is expected to be generalizable.  
While these designs incorporate heterogeneity in the risk of outcome among subjects, they might 
also lead to HTE for treatments that are applied.  These studies may be more likely to yield null 
ATE than efficacy trials, where stricter inclusion criteria produce relatively homogeneous study 
populations.  Therefore, understanding major sources of variations in treatment response is 
essential. 
 
For a formal general definition of HTE, see Box 3.1. 
 
Box 3.1. Formal Definition of HTE 
 
Let an individual or a targeted subgroup with specific levels of characteristics be denoted by i.  Let z 
stand for treatment at two levels {1, 2}, for example, being given aspirin (z=1) or not (z=2).  The 
potential outcomes {Yi(z=1), Yi(z=2)}, are assumed to be binary, 0 or 1, for example, experiencing a 
heart attack within 1 year: Y=0, if a heart attack does not occur and, Y=1, if a heart attack occurs.  The 
individual treatment effects can be measured using an absolute or relative risk model.  For the absolute 
risk model the individual treatment effect, θi = Prob(Yi(2)=1) – Prob( Yi(1)=1).  For the relative risk 
model, θi = log [Prob(Yi(2)=1)/Prob(Yi(1)=1)].  Individual variability of treatment effect occurs if the 
variance (θi) > 0.  Group variability (HTE) occurs if the variance of individual treatment effect is 
nonrandom (i.e. correlated with explanatory variables) so that θsubgroup1 (average θi for a subgroup 
defined by level 1 of an explanatory variable) ≠ θsubgroup2 (average θi for a subgroup defined by level 2 of 
an explanatory variable).  When this variability encompasses treatment effects of different directions, 
i.e., both benefit and harm, this is sometimes called a qualitative treatment interaction, whereas 
differences in the magnitude of treatment effect in the same direction are called quantitative interactions. 
 
There are numerous cases where the effectiveness of specific therapies may be heterogeneous.  
For example, children may respond differently to therapy via different response to treatment or 
to aspects of dosing that are not realized.  Older adults may have worse outcomes from surgeries 
and devices as well as more drug side effects or drug-drug interactions so that therapies might be 
less effective.  Individuals with multiple conditions may be on several therapies that interfere 
with the new treatment (or each other), resulting in a different treatment effect in these patients.  
Genes may also influence response to therapy; since genetic differences (differences in allele 
frequencies) might cluster by race or ethnicity, these characteristics might represent proxies for 
genetic differences that are more difficult to measure directly.  
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Treatment	
  Effect	
  Modification	
  	
  
If two or more exposure variables act in concert to cause disease, we will observe that the effect 
of exposure on outcome (treatment effect) differs according to the level of the other factor(s).  A 
number of terms have been used to describe this phenomenon, including "joint" effects, 
"synergism", "antagonism", "interaction", "effect modification", and "effect measure 
modification."  Where effect modification exists, sound inferences will require accounting for 
factors that modify the effect of the exposure of primary interest.  Accounting for this HTE may 
be required even when the variable that modifies treatment effect is not a risk factor for the 
outcome in the untreated group (e.g., a receptor that determines how a drug is metabolized).  
 
Four perspectives have been advanced on the concept of interaction and the relevance of the 
effect modification in terms of its implication:3 
 
Biological perspective: This perspective is that the interaction elucidates how factors act at the 
biological (mechanistic) level.  The implications of this perspective are that the interaction is a 
representation of an underlying causal structure.  Example: The finding that hypertension and 
smoking have a greater than additive effect on heart attack risk is a representation of some 
underlying biological processes that may enhance our understanding of heart attack etiology. 
 
Statistical perspective: This perspective is that the interactions represent nonrandom variability 
in data unaccounted for by a model that contains only first-order terms (main effects).  
Implication is that the model needs to be reformulated to more accurately reflect the data.  
Example: A differently structured model will appropriately account for the underlying variability 
in the data on hypertension, smoking, and heart attack risk). 
 
Public health perspective: This perspective is that the interactions represent a departure from 
additivity and highlight populations (subgroups) where an intervention can be expected to have 
particularly beneficial effects.  Example: the finding that hypertension and smoking have a 
greater than additive effect on heart attack risk suggests that limited public health resources 
might be most efficiently directed at patients who have hypertension and who are also smokers. 
 
The individual decision-making perspective: This perspective is that the interactions represent a 
departure from additivity so that combined effects in an individual are greater than their sum.  
Example: Someone with hypertension can reduce heart attack risk even more by quitting 
smoking than someone with normal blood pressure. 
 
Since an effect modifier changes the magnitude or direction of the association under study, 
different study populations may yield different results concerning the association of interest.  As 
such, HTE is often suggested as a reason for differences in findings across studies.  If two studies 
included people with different characteristics and the effect of the treatment is different in the 
portion of the population that differs between the studies, then HTE is a plausible explanation for 
the difference.  Further, HTE can be an explanation for differences in treatment effect from 
interventional and observational studies, since observational studies often include patients with 
different characteristics than interventional studies.  Such a hypothesis might be addressed 
through reweighting subgroup effects according to prevalence (standardization) across studies. 
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Unlike potential confounders, modifying variables cannot create the appearance of an association 
(for exposed versus unexposed) where none exists.  But the proportion of the study population 
that has a greater susceptibility will influence the strength of the association.  Therefore, to 
achieve comparability across studies, it is necessary to control for the effect of the modifying 
variables, generally by carrying out a separate analysis at each level of the modifier. 
 
Additionally, the different strength of association between the exposure and outcome within 
strata of the effect modifier may lead to a need to be more precise in the measurement and 
specification of the exposure variable (such as more clearly within strata of the effect modifier). 

Goals	
  of	
  HTE	
  Analysis	
  
There are two main goals of HTE analyses: (1) to estimate treatment effects in clinically relevant 
subgroups (subgroup analysis), and (2) to predict whether an individual might benefit from a 
treatment (predictive learning).2  The first goal of HTE is highlighted in the definition of 
comparative effectiveness research (CER) proposed by the Congressional Budget Office: “an 
analysis of comparative effectiveness is simply a rigorous evaluation of the impact of different 
treatment options that are available for treating a given medical condition for a particular set of 
patients”.1  The second goal of HTE analysis is individual-level prediction.  Predicting 
beneficial and adverse responses of individuals to different treatments in terms of multiple 
endpoints is essential for informing individualized treatment decisions.  One version of this goal 
has been described as answering the question: “Who will benefit most from Treatment A and 
who will benefit most from Treatment B?”4  Creating such a narrowly-defined subgroup (the 
individual patient) leads to an extremely challenging problem, which has not been adequately 
studied, and one for which there are few reliable methods that provide protection against 
spurious findings.5  Subgroup analysis, on the other hand, has been extensively studied.6  Hence, 
we will focus on the subgroup analysis.    

Subgroup	
  Analysis	
  
Subgroup analysis is the most popular analytic approach for examining HTE.  This method 
usually evaluates the treatment effect for a number of subgroups, one variable at a time, usually a 
baseline or pre-treatment variable.  A test for interaction is conducted to evaluate if a subgroup 
variable has a statistically significant interaction with the treatment indicator.  If the interaction is 
significant, then the treatment effect is estimated separately at each level of the categorical 
variable used to define mutually exclusive subgroups (e.g., men and women).   
 
It should be cautioned, however, that the interaction test generally has low power to detect 
differences in subgroup effects.7  For example, when compared to the sample size required for 
detecting ATE of a particular size, a roughly four times larger sample size is required for 
detecting a difference in subgroup effects of the same magnitude as ATE for a 50:50 subgroup 
split; and approximately 16 times larger sample size is required for detecting a difference that is 
half of ATE (at significance level 0.05).   
 
Even though the interaction test has low power to detect a true difference in subgroup effects, 
there is a danger of falsely detecting a difference in subgroup effects if we perform separate 
interaction tests for multiple subgrouping variables.  That is, suppose we perform separate 
interaction tests for 100 subgroup variables.  The interaction test will be statistically significant 
(at a significance level of 0.05), on average, for about 5 subgroup variables, when in truth the 
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treatment effect is homogeneous.  Now, if we make a Bonferroni correction for multiple testing 
in order to maintain the correct Type-I error probability, we would be further increasing the 
Type-II error probability, which increases the likelihood of not identifying true heterogeneity in 
subgroup effects. 
 
It should also be noted that a statistical test of interaction does not correspond to an assessment 
of biological interaction.  The presence or absence of statistical interaction depends on various 
mathematical aspects of the regression model (e.g., scale of dependent variable, covariates 
present in the model, distributional assumptions).  These considerations are largely irrelevant for 
biological interactions.3   
 
An important lesson in the use and potential for misuse of subgroup analyses (and implied HTE) 
came in the form of a large randomized trial of therapies for myocardial infarction.  In 1988, the 
results of the Second International Study of Infarct Survival (ISIS-2) study, a randomized 2x2 
factorial study of the effect of streptokinase and aspirin for treatment of myocardial infarction, 
were published.8  This study provided evidence indicating that either streptokinase or aspirin 
reduced mortality during followup, and that the combination of streptokinase and aspirin 
improved survival over either treatment alone.  In the aspirin-treated subjects, there was a 
reduction in mortality (804 deaths among 8,587 people, 9.4%) relative to subjects not treated 
with aspirin (1,016 deaths among 8,600 people, 11.8%, p<0.05).  Numerous subgroup analyses 
were conducted, most of which indicated relatively consistent effects within subgroups.  
However, one particular subgroup analysis, astrological birth sign, suggested heterogeneity of 
effect.  In the subgroup of patients born under the astrological sign Gemini or Libra, there were 
more deaths (150 of 1,357, 11.1%) among the aspirin-treated patients than there were among the 
nonaspirin-treated patients (147 of 1,442, 10.2%) (p not significant).   
 
This apparent heterogeneity in the effect of aspirin served as a caution.  Rather than inferring that 
aspirin should not be used in the treatment of myocardial infarction if the patient is a Gemini or a 
Libra, the authors strongly caution against drawing strong inferences from subgroup analyses.  
When the ATE is clearly positive (both aspirin and streptokinase reduce mortality in patients 
with myocardial infarction) and many subgroup analyses are conducted, false positive or 
negative findings are to be expected. Findings from such subgroup analyses should be interpreted 
with caution even if a plausible biologic mechanism exists.  Indeed, the ISIS-2 subgroup analysis 
results found a mortality benefit for streptokinase among persons >65 years, those with a 
previous infarct, and in those presenting more than 6 hours from onset of pain, subgroups that an 
earlier randomized trial of streptokinase (GISSI) had suggested would not benefit from 
streptokinase therapy on the basis of subgroup analyses, even though the average effect of 
streptokinase was beneficial. When there are plausible a priori reasons that a treatment may not 
be effective (such as in patients with contraindications to the therapy) and subgroup analyses find 
no benefit in that subgroup, stronger inferences might be drawn.   

Types	
  of	
  Subgroup	
  Analysis	
  
Three different types of subgroup analyses may be distinguished: (a) confirmatory, (b) 
descriptive, and (c) exploratory.9  See Table 3.1 for a summary of the essential characteristics of 
these three types of subgroup analyses. 
 



Chapter 3. Estimation and Reporting of Heterogeneity of Treatment Effects 

Page 58 of 228 
 

Confirmatory	
  Subgroup	
  Analysis	
  	
  	
  
The main goal is to test and confirm hypotheses on subgroup effects.  The essential elements of 
this type of analysis are: clear definition and pre-specification of subgroups; clear definition and 
pre-specification of endpoints related to outcomes; pre-specification of a small number of 
hypotheses on subgroup effects, including the direction in which the effects are expected to vary 
in subgroups; availability of strong a priori biological & epidemiological evidence; detailed 
description of statistical analysis plan on how testing will be done; and adequate power to test 
subgroup hypotheses.  Essentially, the study intent, design, and analysis are all focused on the 
subgroup hypotheses to be tested.  Due to these stringent requirements, the findings from a 
confirmatory analysis are potentially actionable. 
 
Table 3.1. Essential Characteristics of Three Types of Subgroup Analyses9 
 

Descriptive	
  Subgroup	
  Analysis	
  	
  
The main goal of descriptive subgroup analysis is to describe the subgroup effects for future 
evaluation and synthesis.  The essential elements of this type of analysis are: clear definition and 
pre-specification of subgroups, clear definition and pre-specification of endpoints related to 
outcomes, pre-specification of hypotheses relating to subgroup effects, and detailed description 
of statistical analysis plan on how testing will be done.  The results of these subgroup analyses 
may be presented as a table in the main report and as forest plot, with a vertical line representing 
the overall treatment effect (ATE). See Antman et al. for a good example of such a forest plot.10  
Alternatively, they may be made available as an appendix or as electronic supplemental material 
in order to facilitate future evaluation and for synthesis and meta-analysis by systematic 
reviewers. 
 

Properties Confirmatory Descriptive Exploratory 
Goal To test hypotheses related 

to subgroup effects 
To report treatment 
effects for future 
synthesis 

To generate hypotheses for 
further study 

Number of hypotheses  
examined 

A small number, typically 
one or two 

Moderate and pre-
specified 

Not made explicit, but may be 
large, and not pre-specified 

Prior epidemiological or 
mechanistic evidence for 
hypothesis 

Strong Weak or none Weak or none 

Pre-specification of data 
analytic strategy 

Pre-specified in complete 
detail 

Pre-specified Not pre-specified 

Control of familywise 
type I error probability 

Necessary Possible, but not 
essential since the goal 
is not to test hypotheses 

Not essential 

Characterization of 
sampling error of the 
statistical estimator 

Easy to achieve Possible Difficult to characterize 
sampling properties (e.g., 
confidence intervals) 

Power of testing 
hypothesis  

Study may be explicitly 
designed to have adequate 
power  

Likely to be 
inadequately powered 

Inadequate power to examine 
several hypotheses 
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Exploratory	
  Subgroup	
  Analysis	
  
Exploratory subgroup analyses are mainly done to identify subgroup hypotheses for future 
evaluation.  Typically, exploratory subgroups are not pre-specified. Compared to confirmatory 
and descriptive HTE analyses, exploratory analyses enjoy more flexibility for identifying 
baseline characteristics that interact with treatment.  Definition of subgroups, endpoints, 
hypotheses, and modeling parameters are usually derived in response to the data.  An example of 
this would be the use of a stepwise model selection approach to identify treatment by covariate 
interactions.  A major problem with these analyses is that it is extremely difficult to obtain the 
sampling properties of subgroup effect estimators (e.g., standard errors).  Often, it is not clear 
how many hypotheses were tested (e.g., using stepwise model selection to identify HTE).  Post-
hoc exploratory subgroup analyses may, sometimes, identify promising hypotheses that could be 
subject to more rigorous future examination.  The results of these subgroup analyses, while 
potentially important, should be clearly labeled as exploratory.   

Potentially	
  Important	
  Subgroup	
  Variables	
  
Important subgroups are ones for which limited data is typically available, such as the AHRQ 
priority populations (e.g., women, men, children, minorities, elderly, rural populations, 
individuals with disabilities, etc.).11 
 
Subgroup variables must be true covariates, i.e., variables that are defined before an individual is 
exposed to the treatment or variables that are known to be unaffected by the treatment.  Variables 
that change in response to treatment and post-randomization variables are not covariates.  Some 
additional important types of subgroup variables are: 1) demographic (e.g., age); 2) 
pathophysiologic variables (e.g., timing after stroke, stable or unstable angina); 3) comorbidities 
(e.g., presence of renal disease when treating hypertension); 4) concomitant exposures (e.g., 
beta-blockers, aspirin); and 5) genetic markers (e.g., interaction between K-ras gene mutation 
and cetuximab for colorectal cancer).  Sex and age should always be evaluated for interaction 
with treatment, although it is not obvious how to define the age categories.  Notwithstanding, the 
definition of age categories should be pre-specified.  The other subgroup variables should be 
considered when there is prior epidemiological or mechanistic evidence suggesting some 
potential for interaction with the treatment. 

Subgroup	
  Analyses:	
  Special	
  Considerations	
  for	
  Observational	
  Studies	
  

General	
  Considerations	
  
Randomized trials generally have broad exclusion criteria that serve several purposes.  These 
criteria reduce the heterogeneity of the study population so that there is less variability with 
respect to outcome measures, thereby improving statistical power for a given sample size.  
Exclusion criteria also serve to protect patients who might be harmed by a treatment (such as 
those with a contraindication to the treatment).  Since the aim of many observational studies is to 
describe the effect of treatment as actually used, fewer exclusions are typically applied, and those 
that are often applied are for the purpose of improved confounder control.  As a result, 
observational studies often include patients for whom no randomized data of treatment effect 
exists.  For example, a patient with a relative contraindication for a treatment might be excluded 
from a randomized trial, but a treating clinician may decide that the benefits outweigh the risks 
for this patient and apply the therapy.  
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The study of treatment effects can be challenging in observational studies.  Observational studies 
are susceptible to confounding by indication, ascertainment biases in exposure to treatment, 
measurement error in assessment of health outcomes, and lack information on important 
prognostic variables (in studies using existing data).  These biases and measurement errors can 
introduce apparent HTE when in fact none is present, or conversely, obscure true HTE.  Because 
heterogeneity in observational studies can be due to chance or bias, investigators must evaluate 
the observed HTE to determine whether a finding is indicative of true heterogeneity.  To do this, 
chance findings should be evaluated by testing for interaction; biases should be avoided via 
adherence to sound study design principles and by evaluating balance on covariates within 
subgroups to assess the potential for confounding.  
 
There are several potential sources of heterogeneity in observational studies, and these tend to 
mirror the potential explanations for a finding of an overall effect (ATE).  As such, many of the 
approaches for reducing the potential for an incorrect inference are the same.  Careful attention 
to study design principles is an important starting point for avoiding incorrect inferences with 
respect to overall findings and also benefits the identification of potential HTE.  The use of the 
incident (new) user design reduces the potential for inclusion of immortal person-time (i.e., 
person-time during which a study outcome cannot occur; see chapter 4 for a detailed 
discussion).12  Contemporaneous followup of exposed and unexposed subjects (parallel group 
design) avoids calendar time differences in exposure/covariate/outcome identification.  Measures 
of exposure, outcome, and covariates should address misclassification and seek to limit potential 
for information bias (exposure measure, outcome measure, covariate measures).   
 
Despite the challenges in using observational data for HTE analysis, randomized experiments 
cannot be performed to answer all clinically important questions regarding HTE attributable to 
patient characteristics.  Therefore, a huge demand will be placed on observational studies to 
produce evidence to inform decisions.  Hence, procedures must be put in place to ensure that the 
results from observational studies are trustworthy.  A key principle here is that the observational 
studies should be designed and analyzed in the same manner as randomized controlled 
experiments.  Some potential steps include registering observational CER studies prospectively, 
publishing the study protocol (including clear definitions of subgroups and outcomes, pre-
specified hypotheses, and power calculations), and developing a detailed analytic plan (including 
how confounding, missing data, and loss-to-followup will be handled).  Sox has called for 
registration of observational studies, along the lines of National Institutes of Health’s clinical 
trials registry.13  Rubin has put forth an interesting proposal for “objective causal inference,” 
where a greater emphasis is placed on understanding treatment selection.  The modeler is blinded 
to outcomes until the treatment assignment modeling is completed and made available to 
scrutiny.14  This places the emphasis on study design and treatment assignment, and the 
investigator only observes outcomes at the end, as in randomized experiments.  This ensures 
some degree of objectivity in the outcome modeling.   

Value	
  of	
  Stratification	
  on	
  the	
  Propensity	
  Score	
  
A study by Kurth and colleagues illustrates the use of summary score stratification as a means to 
assess HTE in observational studies.15  Since many strokes are the result of thrombosis in 
cerebral or precerebral arteries, a highly specific thrombolytic therapy became available in the 
form of recombinant tissue plasminogen activator (TPA).  Three randomized studies showed that 
TPA neither decreased nor increased mortality substantially in people who had recently 
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experienced a stroke.  However, observational studies of the same question consistently indicated 
that TPA therapy increased mortality, and the discrepancy in results between observational and 
interventional studies was not readily apparent.  With data sourced from a German stroke 
registry, Kurth and colleagues were able to reproduce the observational effect of an increase in 
mortality with TPA with careful attention to study design and regardless of adjustment for 
measured covariates.  However, different analytic approaches (particularly matching on the 
propensity score) provided results more comparable to the randomized trials than was obtainable 
from adjusted analyses.  By stratifying patients according to propensity to receive TPA and 
conducting analyses of TPA effect within strata, this study found that much of the observational 
result was being driven by a few subjects with low propensity to receive TPA who were highly 
influential in analyses that included them (the covariate-adjusted, propensity score adjusted, 
propensity score stratified, and the inverse probability weighted analyses).  However, the 
propensity score matched analyses excluded these influential subjects, and the standardized 
mortality ratio weighted results downweighted their influence so that these results were similar 
to the randomized controlled trials.  As a summary of propensity to receive a medication or 
strength of indication, propensity score identifies clinically relevant subgroups.  If heterogeneity 
is observed in the propensity score, further investigation is warranted. 

Conclusion	
  
RCTs often exclude individuals with characteristics that may cause variation in response to 
treatment, limiting the generalizability of findings from these studies.  Observational studies 
often have broad inclusion/exclusion criteria, allowing for the assessment of comparative 
effectiveness in large, diverse populations in “real-world” settings.  With the increase in 
generalizability comes the potential for HTE. Investigators should understand the potential for 
HTE prior to conducting an observational CER study, and clearly state if and how subgroups will 
be defined and analyzed.  If subgroup analysis is intended to be confirmatory, investigators 
should ensure adequate statistical power to detect proposed subgroup effects, and adjust for 
multiple testing as appropriate. When an interaction test is significant, subgroup effects should 
be reported, and a discussion of the potential clinical importance of the findings should be 
included.  When an interaction test is not significant, the investigator should report the ATE and 
discuss plausible reasons for null findings in relation to other studies. .  Exploratory analyses 
should be clearly labeled as such, and the corresponding results should not be emphasized in the 
abstract of the study report. Reporting of results from descriptive analysis of subgroups defined 
by priority populations using an informative forest plot is encouraged. 
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  the	
  Development	
  of	
  the	
  HTE/Subgroup	
  Analysis	
  Section	
  of	
  
an	
  Observational	
  CER	
  Protocol	
  or	
  Proposal	
  
 

Guidance Key Considerations Check 
Summarize prior knowledge on treatment effect 
modifiers and reference sources 

  

Pre-specify subgroups to be evaluated - Note if priority populations with limited effectiveness data will 
be included in the study and evaluated as subgroups 

- Subgroups should be defined by variables measured at baseline 
or variables known to be unaffected by exposure 

 

Specify the hypothesized direction of effect within 
subgroups and the significance levels that will be 
used to assess statistical significance 

- If confirmatory analyses, do power calculations 
- Describe methods to adjust for multiple testing, if applicable  

Describe how confounding will be addressed - Assess covariate balance between the treatment groups within 
each stratum of the subgrouping variable  

Describe statistical approaches that will be used to 
test for interactions for pre-specified covariates 
 
 

If the interaction test is not significant: 
- Report ATE 
- Discuss plausible reasons for null findings in relation to other 

studies and plausible biological mechanism 
 

 

Describe how overall (ATE) and subgroup effects 
will be reported if interaction test is or is not 
significant 

- Clearly distinguish subgroup results as confirmatory, 
descriptive, or exploratory analyses  

- Report subgroup effects in a table and/or a Forest plot with a 
vertical line representing the overall treatment effect (ATE) 
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Chapter	
  4.	
  Exposure	
  Definition	
  and	
  Measurement	
  

Abstract	
  
Characterization of exposure is a central issue in the analysis of observational data; however, no 
“one size fits all” solution exists for exposure measurement.  In this chapter, we discuss potential 
exposure measurement approaches for observational comparative effectiveness research (CER).  
First, it is helpful to lay out a theoretical link between the exposure and the event/outcome of 
interest that draws from the study's conceptual framework.  For interventions that target health 
and well-being, the physiological or psychological basis for the mechanism of action, whether 
known or hypothesized, should guide the development of the exposure definition.  When 
possible, an operational definition of exposure that has evidence of validity with estimates of 
sensitivity, specificity, and positive predictive value should be used.  Other important factors to 
consider when defining exposure are the time frame (induction and latent periods), changes in 
exposure status or exposure to other therapies, and consistency and accuracy of exposure 
measurement.  The frequency, format, and intensiveness of the exposure is another important 
consideration for the measurement of exposure in CER studies, which is applicable to 
medications (e.g. dose) as well as health service interventions that may require multiple sessions, 
visits, or interactions.  This chapter also discusses methods for avoiding nondifferential and 
differential measurement error, which can introduce bias, and describes the importance of 
determining the likelihood of bias and effects on study results.  We conclude with a checklist of 
key considerations for the characterization and operationalization of exposure in CER protocols 
and proposals. 

Introduction	
  
In epidemiology, the term exposure can be broadly applied to any factor that may be associated 
with an outcome of interest.  When using observational data sources, researchers often rely on 
readily available (existing) data elements to identify whether individuals have been exposed to a 
factor of interest.  One of the key considerations in study design is how to determine and then 
characterize exposure to a factor, given knowledge of the strengths and limitations of the data 
elements available in existing observational data.  
 
The term exposure can be applied to the primary explanatory variable of interest and to other 
variables that may be associated with the outcome, such as confounders or effect modifiers, 
which also must be addressed in the analysis of the primary outcome.  For example, in a study of 
the comparative effectiveness of proton pump inhibitors and antibiotic treatment of H. pylori for 
the prevention of recurrent gastrointestinal (GI) bleeding, the primary exposures of interest are 
proton pump inhibitors and the antibiotics for H. pylori.  However, it would also be important to 
measure exposure to aspirin and nonsteroidal antiinflammatory drugs (NSAIDs), which would 
increase the risk of GI bleeds independent of treatment status. Similarly, in a comparative 
evaluation of cognitive behavioral therapy (CBT) for treatment of depression compared to no 
CBT, it would be important to measure not only the exposure to CBT (e.g., number and/or type 
of therapy sessions), but also exposure to other factors such as antidepressant medication.   
 
Each intervention (e.g., medication, surgery, patient education program) requires a unique and 
thoughtful approach to exposure ascertainment.  While it may only be necessary to identify if 
and when an intervention occurred to assign individuals to the appropriate comparison group for 
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“one-time” interventions such as surgery or vaccine administration, for pharmacologic and other 
more sustained interventions such as educational interventions, it will often be important to 
consider the intensity of the exposure by incorporating the dose, frequency, and duration.  For 
example, to evaluate the comparative effectiveness of a multi-visit behavioral intervention for 
weight loss compared to a single visit program, it is important to consider the total number of 
visits to ascertain exposure.    
 
The data elements available in a dataset may dictate how exposure is measured.  Unlike 
randomized clinical trials, where mechanisms exist to ensure exposure and capture relevant 
characteristics of exposure, observational comparative effectiveness studies often have to rely on 
proxy indicators for the intervention of interest.  In clinical trials of medications, drug levels may 
be monitored, pill counts may be performed, and medications may be dispensed in limited days 
supply around routine study visits to facilitate medication use.  When relying on observational 
data, however, exposure ascertainment is often based on medication dispensing records and only 
under rare exceptions will drug levels be available to corroborate medication exposure (e.g., 
international normalized ratio [INR] rates might be available from medical records for studies of 
anticoagulants).   
 
No “one size fits all” solution exists for exposure measurement.  Researchers who seek to 
address similar clinical questions for the same chronic condition may use different approaches to 
measuring exposure to the treatments of interest.1,2,3,4,5  For example, in evaluating the 
association between use of inhaled corticosteroids (ICS) and fracture risk in patients with chronic 
obstructive pulmonary disease (COPD), the period used to define exposure to ICS ranged from 
ever having used ICS to use during the entire study period to use in the last 365 days to use in the 
last 30 days.  In addition, exposure was characterized dichotomously (e.g., ever/never) or 
categorically based on amount of exposure during the measurement time periods.  These 
examples show that methods for measuring exposure, even for addressing the same clinical 
question, can vary.  Thus, the intent of this chapter is to identify important issues to consider in 
the determination of exposure and describe the strengths and limitations of different options that 
are available given the nature of the research question.   

Conceptual	
  Considerations	
  for	
  Exposure	
  Measurement	
  

Linking	
  Exposure	
  Measurement	
  to	
  Study	
  Objectives	
  
A study’s conceptual basis should serve as the foundation for developing an operational 
definition of exposure.  That is, if the objective of the study is to examine the impact of chronic 
use of a new medication on patient outcomes, then the measurement of exposure should match 
this goal.  Specifically, the definition of exposure should capture the long-term use of the 
medication and not simply focus on a single use event.  The exposure measurement could 
include alternative measures that capture single use events; however, the exposure measurement 
should be able to distinguish short-term use from long-term use so that the primary study 
question can be adequately addressed. 
 

Examining	
  the	
  Exposure/Outcome	
  Relationship	
  
The known properties of the intervention of interest should also guide the development of 
exposure measures.  It is helpful to lay out a theoretical and biological link between the exposure 
and the event/outcome of interest that draws from the study's conceptual framework.  The 
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biological mechanism of action, whether known or hypothesized, should guide the development 
of the exposure definition.  If the primary exposure of interest in the analysis is a medication, it 
may be relevant to briefly describe how the pharmacology, the pharmacodynamics (the effects of 
medication on the body), and the pharmacokinetics (the process of drug absorption, distribution, 
metabolism, and excretion from the body) informed the exposure definition.  For example, in a 
comparison of bisphosphonates for the prevention of osteoporotic fractures, the exposure 
definition would need to be tailored to the specific bisphosphonate due to differences in the 
pharmacokinetics of the various medications.  The definition of exposure for ibandronate, which 
is a bisphosphonate indicated for osteoporosis administered once per month and has a very long 
half-life, would likely need to be different than the definition of exposure for alendronate, a 
treatment alternative that is administered orally daily or weekly.  When operationalizing 
exposure to these two medications, it would be insufficient to examine medication use in the last 
week for identifying current use of ibandronate, but sufficient for current use of alendronate.  
Analogous scenarios can be envisioned for nonpharmacological interventions.  For example, in a 
study examining a multi-visit educational intervention for weight loss, the effect of the 
intervention would not be expected until individuals participated in at least one (or some) of the 
sessions.  Therefore, it would not be appropriate to create an exposure definition based on 
registration in the program unless subject participation could be verified.  

Examples	
  of	
  Exposure/Outcome	
  Relationships	
  	
  
As noted above, it is helpful to lay out a theoretical and biological link between the exposure and 
the event/outcome of interest that draws from a conceptual framework.  Several examples of 
exposure and event relationships are displayed in Figure 4.1.  These panels show how an 
exposure might be associated with an increased likelihood of a benefit or harm. 
 
Figure 4.1. Examples of exposure(s) and risk/benefit associations  
 

 
The first column (A-C) shows multiple exposures over time where the timing of the exposure is 
not consistent and stops midway through the observation period.  Panel A shows a scenario in 
which there is a “threshold effect” - where the benefit (or risk) associated with the exposure 
increases after a specific amount of exposure and the level of benefit/risk is maintained from that 
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point forward.  In defining exposure under this scenario, it would be important to define the 
cumulative amount of exposure.  For example, if evaluating the comparative effectiveness of 
antibiotics for the treatment of acute infection, there may be a threshold of exposure above which 
the medication is considered effective treatment.  In this case, the exposure measurement should 
measure the cumulative exposure to the medication over the observation timeframe and define 
individuals as exposed when the threshold is surpassed (if the exposure variable is 
dichotomized).  This contrast with Panel B where the association between the exposure and the 
effect decreases rapidly after the exposure is removed.  This type of association could be 
encountered when evaluating the comparative effectiveness of antihypertensive medications for 
blood pressure control.  In this case, there may be a) some minimum amount of exposure 
necessary for the medication to begin to have an effect and b) an association between the 
frequency of administration and effectiveness.  When the exposure is removed, however, blood 
pressure may no longer be controlled and effectiveness decreases rapidly.  In operationalizing 
this exposure-event association it would be necessary to measure the amount of exposure, the 
frequency with which it occurred, and when exposure ended.  In panel C there is an increase in 
the likelihood of the outcome with each exposure that diminishes after the exposure is removed.  
This may represent an educational weight loss intervention.  In this example, continued exposure 
improves the effectiveness of the intervention, but when the intervention is removed, there is a 
slow regain of weight.  Similar to Panel B, it is important to consider both the timing and the 
amount of exposure for the weight loss intervention.  Because the effectiveness diminishes 
slowly only after the exposure is removed, it is important to consider a longer exposure window 
than when effectiveness diminishes rapidly. 
 
The second column shows scenarios where the exposure of interest occurs at a single point in 
time, such as a surgical procedure or vaccination.  The relationship in panel D shows an 
immediate and sustained effect following exposure.  This could represent a surgical procedure 
and is a situation in which the measurement of exposure is straightforward as long as the event 
can be accurately identified, as exposure status would not vary across the observation period.  
Measurement of exposure in panels E and F is more complex.  In panel E, the exposure is a 
single event in time with an immediate effect that diminishes over time.  An example of this 
could be a percutaneous coronary intervention (PCI) where the time scale on the x-axis is 
measured in years.  There is an immediate effect from the exposure (intervention) of opening the 
coronary arteries that contributes to a reduced risk of acute myocardial infarction (AMI).  
However, the effectiveness of the PCI decreases over time with the risk of AMI returning to 
what it was prior to the intervention.  In this example, it is clearly important to identify and 
measure the intervals at which the risk is modified by PCI.  After a sufficient amount of time has 
passed from the initial PCI, it may not be appropriate to consider the individual exposed.  At the 
very least, the amount of time that has passed post-exposure should be considered when creating 
the operational definition of exposure.  Panel F represents a scenario where the effect from a 
single exposure is not immediate but happens relatively rapidly and then is sustained.  Such a 
situation could be imagined in a comparative effectiveness study of a vaccination.  The benefits 
of the vaccination may not be realized until there has been an appropriate immunological 
response from the individual, and the exposure definition should be created based on the 
expected timing of the response that is consistent with clinical pharmacological studies of the 
vaccine.  
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The final column of Figure 4.1 represents scenarios where there are multiple exposures over time 
with different exposure-risk/benefit relationships.  In each of these examples, it is important to 
consider the cumulative amount of exposure when developing the exposure definition.  In panel 
G, the depicted relationship shows a dose-response in which the risk or benefit increases at a 
slower rate after a threshold of exposure is reached.  An example of this could be a behavioral 
intervention that includes personal counseling for lifestyle modifications to improve 
hypertension management.  There may be a minimum number of sessions needed before the 
intervention has any effect and, after a threshold is reached, the incremental effectiveness of a 
single session (exposure) is diminished.  In measuring exposure in this example, it would be 
important to determine the number of sessions that an individual participated in, especially if 
multiple exposure categories are being created.  Panel H shows a linear increase in the 
risk/benefit associated with exposure.  This example may be best illustrated by a comparative 
safety evaluation of the impact of oral corticosteroids on fracture risk.  Continued exposure to 
oral corticosteroids may continue to increase the risk of fracture associated with their use.  In this 
example, it would be necessary to characterize cumulative exposure when creating exposure 
definitions as there will be a difference in the risk of those exposed to “a little” in comparison to 
those exposed to “a lot”.  The final scenario is panel I, which shows a large change in risk/benefit 
upon initial exposure and then an increase in the risk/benefit at a slower rate with each 
subsequent exposure.  For panel I, it would be most important to determine if the exposure 
occurred (as this is associated with the largest change in risk/benefit) and then quantify the 
amount of exposure.   

Induction	
  and	
  Latent	
  Periods	
  
In creating exposure definitions, it is also important to consider the induction and latent periods 
associated with the exposure and outcome of interest.6 The induction period is the time from 
when the causal effects of the exposure have been completed to the start of the event or outcome.  
During the induction period, additional exposures will not influence the likelihood of an event or 
outcome because all of the necessary exposure to cause the event or outcome has been 
completed.  For example, additional exposure to the vaccine for mumps during childhood will 
not increase or decrease the likelihood of getting mumps once the initial exposure to the vaccine 
has occurred.  
 
The latent period is the time from when the outcome starts to when the outcome is identified.  In 
other words, it is the period between when the disease or outcome begins and when the outcome 
is identified or diagnosed.  Similar to the induction period, exposures during the latent period 
will not influence the outcome.  Practically, it may be very difficult to distinguish between latent 
and induction periods, and it may be particularly difficult to identify the beginning of the latent 
period.  However, both periods should be considered and ultimately not included in the 
measurement of exposure.  In practical terms, it is sufficient to consider the induction and latent 
period as a single time period over which exposures will not have an effect on the outcome.  A 
timeline depicting multiple exposures, the induction period, the latent period, and the outcome of 
interest is shown in Figure 4.2.   
 
Figure 4.2. Timeline of exposure, induction period, latent period and outcome 
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See White E, Armstrong BK, Saracci R. Principles of exposure measurement in epidemiology, 2nd edition, New 
York: Oxford University Press Inc.; 2008.  This figure is copyrighted by Oxford University Press and reprinted with 
permission. 
 
As an example of incorporating both the induction and latent periods in exposure measurement, 
consider the evaluation of the comparative effectiveness of a cholesterol lowering medication for 
the prevention of myocardial infarction.  First, the induction period for the medication could be 
lengthy if the effectiveness is through lowering cholesterol to prevent atherosclerosis.  Second, 
there is likely a very small latent period from disease onset to identification/diagnosis.  That is, 
the time from when the myocardial infarction starts to when it is identified will be relatively 
short.  Any medication use that occurs during the induction and latent periods should not be 
included in the operational definition of exposure.  For this example, it would be inappropriate to 
consider an individual exposed to the medication of interest if they had a single dose of the 
medication the day prior to the event, as this would not have contributed to any risk reduction for 
the event.  Because of the short latent period, it would be unlikely that exposures occurred during 
that timeframe.  Exposure should be measured during a time period when the use of lipid 
lowering medications is expected to have an effect on the outcome.  Therefore, the exposure 
definition should encompass a timeframe where the benefit of lipid lowering medications is 
expected and this should be justified based on what is known about the link between 
atherosclerosis and myocardial infarction and the known biological action of lipid lowering 
medications.    

Changes	
  in	
  Exposure	
  Status	
  	
  
Another relevant consideration when developing exposure measurement relates to changes in 
exposure status, and particularly if patients switch between active exposures when two or more 
are being investigated.  While medication or exposure switching may be more relevant for design 
and/or analysis chapters in this guidance, it is also important to consider how it might relate to 
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exposure measurement.  One of the important factors associated with medication switching when 
creating exposure definitions is to determine if “spillover” effects might persist from the 
medication that was discontinued.  If this is true, it would be necessary to extend the 
measurement of exposure beyond when the switch occurred.  Similarly, depending upon the 
effects of the intervention that was started, it is important to consider its biological effects when 
developing the exposure definition following a switch.  

Data	
  Sources	
  

Exposure	
  Measurement	
  Using	
  Existing	
  Electronic	
  Data	
  
The ability to measure exposures based on available data is also an important consideration when 
creating an operational definition of exposure.  Is there a consistent and accurate way to identify 
the exposure in the dataset?  If the exposure of interest is a surgical procedure, for example, is 
there a single code that is used to identify that procedure or is it necessary to expand the 
identification beyond a single code?  If using more than one code, do the codes only identify the 
procedure of interest or is there variability in the procedures identified?   
 
To illustrate these issues, consider the case where the primary intervention of interest is 
colonoscopy.  Depending on the source of the data, colonoscopies may be identified with a CPT 
code (e.g., CPT 45355 Colonoscopy, rigid or flexible, transabdominal via colostomy, single or 
multiple), an HCPCS code (e.g., G0105 Colorectal cancer screening; colonoscopy on individual 
at high risk), or an ICD-9 procedure code (e.g., 45.23 Colonoscopy).  To accurately identify this 
procedure, it is necessary to consider more than one type of procedure code when classifying 
exposure.  All of these may reliably identify exposure to the procedure, but use of only one may 
be insufficient to identify the event.  This may be influenced by the source of the data and the 
purpose of the data.  For example, one set of codes from the list may be useful if using hospital 
billing data while another may be useful for physician claims data.  When making this decision, 
it is important for the investigators to balance the selection of the codes and the accurate 
identification of the exposure or intervention; creating a code list that is too broad will introduce 
exposure misclassification.  Overall, it will be important to provide evidence on the most 
accurate and valid mechanism for the identification of the exposure or intervention across the 
datasets being used in the analysis.  Researchers should therefore cite any previous validation 
studies or perhaps conduct a small validation study on the algorithm proposed for the exposure 
measurement to justify decisions regarding exposure identification.  Issues in selection of a data 
source are covered in detail in chapter 8. 

Exposure	
  Measurement	
  via	
  Prospective	
  Data	
  Collection	
  
In addition to existing data sources, it may be feasible or necessary to prospectively collect 
exposure information for use in an observational comparative effectiveness study in some 
circumstances from patients or physicians.  Abstraction of (paper) medical records is a type of 
prospective data collection that draws on existing medical records that have not been compiled in 
a research-ready format.   
 
The validity and accuracy of self-reported exposure information may depend on the type of 
exposure information being collected (i.e., medication use versus history of a surgical procedure) 
or whether the information is focused on past exposures or prospectively collecting 
contemporary exposure information.  The characteristics of the exposure and the patient 
population are likely to influence the validity of the information that is collected.  The recall of 
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information on a surgical procedure may be much more accurate than the recall of the use of 
medications.  For example, women may be able to accurately recall having had a hysterectomy 
or tubal sterilization7 while the ability to recall prior use of NSAIDs may be quite inaccurate.8  In 
these examples, the accuracy of recall for hysterectomy was 96 percent while only 57 percent of 
those that had a dispensing record for an NSAID reported use of an NSAID, showing the 
potential for exposure misclassification when using self-reported recall for medication use.  In 
the medication example, factors associated with better recall were more recent use of a 
medication and repeated use of a medication.  Similar to other sources of data for exposure 
measurement, use of this type of data should be supported by evidence of its validity. 

Creating	
  an	
  Exposure	
  Definition	
  

Time	
  Window	
  
A key component in defining exposure is the time period during which exposure is defined, often 
referred to as the time window of exposure.  The exposure time window should reflect the period 
during which the exposure is having its effects relevant to the outcome of interest.6  In defining 
the exposure time window, it is necessary to consider the induction and latent periods.  As noted 
in the statin example above, the exposure time window to evaluate the effectiveness of statins for 
preventing AMIs should be over the time period that statins can have their impact on 
cardiovascular events, which would be over the preceding several years rather than, for instance, 
over the 2 weeks immediately preceding an event.   
 
There is no gold standard in defining the exposure time window, but the period selected should 
be justified based on the biologic and clinical pathways between the intervention/exposure and 
the outcome.  At the same time, practical limitations of the study data should be acknowledged 
when defining the exposure time window.  For example, lifetime exposure to a medication may 
be the ideal definition for an exposure in some circumstances but most existing datasets will not 
contain this information.  It then becomes necessary to justify a more pragmatic approach to 
defining exposure given the length of followup on individuals available in the dataset.  A variety 
of approaches to defining exposure time-windows have been used in both cohort and case-
control studies.  As highlighted in the introductory section of this chapter, even when examining 
the same clinical question, investigators have selected different exposure time windows.  In most 
of these examples, the choice of the exposure time window is not clearly justified.  Ideally, this 
should be related back to the conceptual framework and biological plausibility of the question 
being addressed.  However, as noted above, there are pragmatic limitations in being able to 
measure exposure and in the case where selection of the exposure time window is arbitrary or 
limited by data, sensitivity analyses should be performed in order to evaluate the robustness of 
the results to the time window.        

Unit	
  of	
  Analysis	
  
When creating a definition for an exposure measurement, it is necessary to consider the unit of 
analysis for the study and the measurement precision possible within the constraints of the data.  
The nature of the intervention largely dictates the appropriate unit of analysis.  If the intervention 
of interest does not vary with time, the unit of measurement can be defined at the patient level 
because exposure status can be accurately classified for the duration of the analysis.  This may be 
the case for surgical procedures or other interventions that occur at a single point in time and that 
have a persistent effect (panel D in Figure 4.1).  For other interventions or exposures, units of 
analysis may be more appropriately defined in terms of person-time, as the exposure status of 
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individuals may vary over the course of the study period.  This is a common approach for 
defining exposure in studies of medication treatment outcomes, as medication regimens often 
involve addition or discontinuation of medications, suboptimal adherence, dosage changes, or 
other factors may cause changes in exposure to the intervention of interest.   

Measurement	
  Scale	
  	
  
The scale of the exposure measure should be operationalized in a manner that makes the most 
use of the information available.  The more precisely an exposure is measured, the less 
measurement error.  In many observational CER studies, the intervention of interest can be 
measured as a dichotomous variable (i.e., exposed or not exposed).  For example, an individual 
either had or did not have a surgical procedure.   
 
For other types of exposures/interventions in observational CER, it may be desirable to measure 
exposure as a continuous covariate, particularly when there is a dose-response relationship (e.g., 
panel H of Figure 4.1).  However, the ability to operationalize exposure as a continuous variable 
may be limited by the availability and uncertainty surrounding the accuracy of the exposure data.  
Under cases of nondifferential misclassification in a continuous exposure variable, the degree of 
bias toward the null hypothesis is impacted by the precision of the exposure measurement - not 
the bias in the exposure measure.9  Therefore, if the accuracy of the classification can be 
improved by using an alternative approach to scaling (e.g., measuring exposure as a categorical 
variable), it is possible to introduce less bias towards the null than is associated with the 
continuous measure.  For example, if an individual was dispensed three separate prescriptions 
with a 30 day medication supply, they may not have taken the entire 90 day supply, but it is 
likely that they took more than 60.  In this case, an ordinal scaling of exposure measure for the 
number of doses of a medication may be preferable when it may not be possible to accurately 
identify the actual number of doses taken.   

Dosage	
  and	
  Dose-­‐Response	
  	
  
The concept of dose is an important consideration for the measurement of exposure in 
observational comparative effectiveness studies.  Indeed, as shown in each of the event and 
exposure relationships depicted in the first column of Figure 4.1, the cumulative dose, or total 
amount of exposure over a specified time period, is often optimal for adequately defining 
exposure.  To calculate cumulative dose, three elements of exposure are necessary: 1) frequency 
of exposure, 2) amount/dose of each exposure occurrence, and 3) duration of exposure.  
Importantly, dose is applicable not only to medications but also to health services interventions 
that require multiple sessions, visits, or interactions.  With respect to medications, it may be 
possible to obtain all of the necessary information to calculate cumulative exposure to a specific 
prescribed medication from pharmacy claims data, where such data are typically collected for 
billing purposes.  Information on the dose of each dispensed medication in the United States is 
available through the National Drug Code (NDC) for the product.  Upon extracting information 
on the strength of each dose from the NDC code, dose strength can be combined with quantity 
dispensed and days supply to determine the amount of each exposure event and the frequency of 
the exposure.  When using data outside of the United States, the World Health Organization’s 
Anatomical Therapeutic Chemical (ATC) Classification System may be used to measure 
exposure based on defined daily doses (DDDs), which are the assumed average maintenance 
doses per day for a drug used based on its main indication in adults 
(http://www.whocc.no/ddd/definition_and_general_considera/).  Cumulative dose exposure 
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definitions can be used to explore a dose-response relationship between the exposure and the 
event.  Cumulative dose can also be used to determine if there is a threshold effect.   
 
While cumulative exposure may be an important concept in many comparative effectiveness 
studies of medications, it may not be as relevant in other studies.  There may be medications 
where use is so intermittent that it is not possible or relevant to capture cumulative exposure.  
This is also the case with one-time interventions like surgical procedures where the concept of 
dose has less meaning. 
 
Modes of administration and different dosage forms can present complexities in operationalizing 
a definition of exposure when using administrative data.  For example, a study using 
observational data to examine the effectiveness of hydrocortisone as a treatment for irritable 
bowel disease (IBD) would seek to identify only those prescriptions for hydrocortisone that were 
used for IBD treatment.  This could be accomplished by focusing only on specific dosage forms 
that would be used in the treatment of IBD to avoid misclassification of exposure to other forms 
of hydrocortisone.  Therefore, the definition of exposure needs to be specific to the exposure of 
interest and avoid misclassification due the availability of other dosage forms or routes of 
administration.  Conversely, it may be necessary to create a wider definition that looks across 
multiple dosage forms if the question of interest were focused on a systemic effect of a 
medication that could be delivered in multiple forms. 
 
Similarly, behavioral factors might modify the effect of the observed association.  These can 
include factors like medication adherence, which may be considered in the definition of 
exposure.  Several examples of observational studies of medications exist that required a specific 
level of adherence prior to categorizing an individual as exposed.  For example, a study may 
require that an individual use at least 75 percent of their prescribed medication on a regular basis 
before they are considered exposed.  This is most frequently operationalized by calculating the 
medication possession ratio and determining if it crosses a threshold before categorizing an 
individual as exposed; again, the approach should be linked to the hypothesized mechanism of 
effect.  More detailed descriptions of approaches to analyzing medication compliance and 
persistence using retrospective databases are available.10  Currently, there is no gold standard 
that indicates what amount of a given medication needs to be used prior to it having its effect.  
The choice of a threshold should be supported by a rationale for the level that is selected.  In 
addition, while measures of adherence can be used as a measure of amount of exposure or the 
dose, it is also important to consider differences in adherent versus nonadherent patients.  That is, 
patients that are adherent to their treatment regimens may be systematically different from those 
that are nonadherent to treatment.  These differences impact the outcomes being measured, 
independent of the exposure measurement.  These factors should be considered when deciding 
whether or not to incorporate adherence as part of the exposure measure. 

Precision	
  of	
  Exposure	
  Measure	
  
The source of the data being used for the analysis can limit the ability to precisely characterize 
exposure.  For instance, EMR data may only provide information on medication orders or active 
drug lists, and would not allow for accurate classification of exposure on a daily basis.  
Attempting to do so would likely introduce high levels of exposure misclassification.  The use of 
administrative claims data that provide information on medication dispensing may provide a 
more accurate estimate of the use of medications on a more routine basis.  However, this data 
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source will only reflect dispensing of medications and not actual medication use.  Multiple 
dispensings may provide greater assurance that the individual is being routinely exposed to the 
medication, but cannot guarantee the patient has taken the medication.  A more accurate measure 
of medication use would be to have information on medication assays.  However, only a select 
number of medications have routine labs drawn to ascertain levels and this does not present a 
practical solution in most observational CER projects.  Thus, while dispensing data may provide 
a more accurate measurement on a more routine basis than other sources of data, assumptions 
about actual use are still inherent in the use of these data for determining exposure status.  
Investigators should understand the benefits and limitations associated with the data source being 
used, and ensure that the exposure can be measured with sufficient precision to answer the 
research question of interest. 

Exposure	
  to	
  Multiple	
  Therapies	
  	
  
A complexity in observational CER is the lack of control over other medications used by 
individuals in the study, and the fact that exposure to other medications is unlikely to be 
randomly distributed among the exposed and unexposed groups.  Therefore, when characterizing 
the primary exposure of interest, it is also important to consider the influence of other exposures 
on the outcome.  Multiplicative or additive effects may be possible.  For example, it may be 
important to consider the joint antihypertensive effects of various classes of antihypertensive 
medications in a comparative effectiveness study, as these medications will frequently be used in 
combination.   

Issues	
  of	
  Bias	
  

Measurement	
  Error	
  
In observational CER studies, both nondifferential and differential measurement error can 
introduce bias.  Differential misclassification is when the error in the exposure measurement is 
dependent on the event of interest.  This measurement error can result in biased estimates either 
away from or towards the null, making the observed association look stronger or weaker than the 
true underlying association.  Differential measurement error can even lead to observed 
associations that are in the opposite direction of the true underlying association.  Nondifferential 
measurement error occurs when there are errors in the measurement of exposure that are 
proportionally the same in both the group that does and does not experience the outcome of 
interest.  For the most part, this type of measurement error will bias the results toward the null 
hypothesis, causing an underestimate of the true effect of the association.   
 
The goal with any measurement of exposure is to minimize the amount of misclassification that 
occurs as part of the study design.  For dichotomous measures, investigators should attempt to 
maximize the sensitivity and specificity of the measure to minimize the amount of 
misclassification.  One source of misclassification in observational studies results from the 
failure to account for changes in exposure to medication during the observational period.  Such a 
situation would support a person-time unit of analysis.  In cohort studies, exposure status may be 
determined at a single point in time; this may not be reflective of use of the medication over the 
study period.  There may be frequent changes to medication regimens during followup; simply 
classifying patients as exposed or not exposed at the onset of the study period can lead to a high 
degree of misclassification that is nondifferential.11  This may be true for exposures that occur 
intermittently and those that occur on a more frequent basis but are associated with high rates of 
nonadherence. 
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The potential influence of choices made in operationalizing the exposure definition on 
misclassification should be considered by the investigators when designing the study.  For 
example, what is the potential for misclassification of exposure with a given choice of the 
exposure time window?  Will selecting a relatively short exposure time window produce a high 
degree of misclassification of exposure that would potentially lead to a biased effect estimate?  
Investigators should consider the practical limitations of the data and the influence that it might 
have on the measurement error.  There are many other potential sources of misclassification 
when measuring exposure, including: 1) measurement of exposure during induction or latent 
periods, 2) failure to incorporate the sustained effects of the medication or other intervention 
when creating an exposure definition, and 3) use of health care services not captured in the data 
source.  To expand upon the latter issue, data from health systems like insurance companies 
often lack the ability to capture out-of-system health care utilization.  Therefore, exposures 
occurring out-of-system will not be observed and may lead to misclassification.  Bias in 
measurable exposure times is known as immeasurable time bias.12  
 
Over-the-counter (OTC) medications present a scenario in which misclassification is particularly 
problematic.  Measurements based on administrative or EMR data will underestimate the use of 
OTC products and lead to misclassification of exposure to those medications.  The inability to 
measure exposure during the observation period can also be problematic if the available data do 
not fully capture all sources of exposure.  The use of OTC medication as an exposure is but one 
example of not being able to accurately capture all exposures, but this can occur in other 
circumstances.  For example, hospital billing data usually will not include detailed information 
on the medications used during the inpatient stay, which can lead to misclassification of 
exposure during a hospitalization.  So while the individual is using health care that is captured by 
the data source, there is insufficient detail to accurately capture exposure.  Therefore, 
investigators should determine if there are periods of time in which the exposure status of 
individuals cannot be ascertained in the data being used in the analysis and evaluate the potential 
impact on exposure measurement. 
 
A specific type of measurement bias for exposures that has received a lot of attention in recent 
literature is immortal time bias.13  This occurs when person-time is inappropriately assigned to 
an exposure category.  A common example of immortal time bias occurs when exposure is 
defined based on the requirement of two dispensings of a medication.  The time period between 
those two dispensings represents an immortal period where events among exposed individuals 
(e.g., death) would not be attributed to exposure because the individuals exposed to only one 
dispensing have not qualified as exposed according to the definition.  Clearly, this introduces a 
bias into the observed association and is remedied by correctly classifying person-time from the 
beginning of the exposure period (i.e., the first dispensing in this example).  For time-based, 
event-based, and exposure-based cohort definitions, the bias in the rate ratio that arises from the 
immortal time increases with duration of immortal time.13  

Conclusion	
  
In this chapter, we have introduced many issues to consider in creating definitions for exposure 
when conducting CER using observational data.  The operationalization of exposure should be 
guided by the clinical pathways/conceptual framework that motivate a CER question, knowledge 
of the characteristics of the exposure/intervention and outcome of interest, awareness of the level 
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of detail on exposure in a dataset and options for characterizing exposure, and deliberation over 
approaches to limit the potential for bias and measurement error.  Below, we have created 
recommendations in the form of a checklist that encompasses many of the key considerations 
raised in this chapter to guide the operationalization of exposure.           
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Exposure	
  Determination	
  and	
  Characterization	
  in	
  CER	
  
Protocols	
  and	
  Proposals	
  
 

Guidance Key Considerations Check 
Propose a definition of exposure that is consistent with the 
clinical/conceptual basis for the research question. 

Consider the physiological effects of the 
exposure/intervention when creating an operational 
definition of exposure. 
Determine the most suitable scale for the measurement of 
exposure. 

 

Provide a rationale for exposure time window choice.   For medications, consider factors such as dose, duration of 
treatment, pharmacodynamic/pharmacokinetic properties 
such as half-life, and known or hypothesized biological 
mechanisms associated with the medication of interest 

 

Describe the proposed data source(s) and explain how they are 
adequate and appropriate for defining exposure. 

  

Provide evidence of validity of the operational definition of 
exposure with estimates of sensitivity, specificity, and positive 
predictive value, when possible.    

If there are no validation studies to define the exposure of 
interest, utilize measures and definitions that have been 
most commonly reported in the literature to facilitate 
comparison of results.    
Alternative definitions could be developed and used in 
addition to a ‘commonly used’ definition for exposure, 
particularly if there are reasons to suspect there may be 
more accurate definitions available. 

 

Support choice for unit of analysis for exposure measurement, 
e.g., person-months of exposure, and discuss the trade-offs for 
alternative units of measurement. 

 
 

Address issues of differential and nondifferential bias related to 
exposure measurement and propose strategies for reducing error 
and bias, where possible. 
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Chapter	
  5.	
  Comparator	
  Selection	
  	
  

Abstract	
  
This chapter discusses considerations for comparator selection in comparative effectiveness 
research (CER).  Comparison groups should reflect clinically meaningful choices in real world 
practice and be chosen based on the study question being addressed.  Recognizing the 
implications and potential biases associated with comparator selection is necessary to ensure 
validity of study results; confounding by indication or severity and selection bias (healthy user 
bias) is particularly challenging, especially with comparators of different treatment modalities.  
Confounding by indication can be minimized by choosing a comparator that has the same 
indication, similar contraindications, and a similar treatment modality (when possible). In fact, 
comparing a treatment to a clinically meaningful alternative treatment within the same or a 
similar indication is the most common scenario in CER, and also typically the least biased 
possible comparison.  When carefully planned, comparisons of different treatment types are 
possible with adequate study design and appropriate analytic methods.  However, we note that 
certain comparisons or study questions may not be feasible or valid to be answered in 
observational CER studies due to potentially uncontrollable bias.  Other aspects to consider when 
choosing a comparator include clearly defining the indication, initiation period, and exposure 
window for each group.  The appropriate dose/intensity of each exposure should be as 
comparable as possible and nonadherence should be considered (although not necessarily 
adjusted).  This chapter concludes with guidance and key considerations for choosing a 
comparison group for an observational CER protocol or proposal. 

Introduction	
  
In comparative effectiveness research (CER), the choice of comparator directly affects clinical 
implication, interpretation, and validity of study results.  When formulating a research question, 
therefore, careful attention to proper comparator selection is necessary.  
 
Treatment decisions are based on numerous factors associated with the underlying disease and its 
severity, general health status or frailty, quality of life and patient preferences, leading to the 
potential for confounding by indication or severity and selection bias.  Recognizing the 
implications and potential biases associated with comparator selection are critical for ensuring 
the internal validity of observational CER studies.  Section one of this chapter begins by 
describing these biases, and discusses the potential for bias associated with different comparison 
groups (e.g., no intervention, usual care, historical controls, and comparison groups from other 
data sources).  
 
Defining the appropriate dose, intensity of treatment, and exposure window for each comparator 
group is also critical for ensuring the validity of observational CER.  The second section of this 
chapter discusses these considerations for operationalizing comparison groups, and concludes 
with special considerations that apply to CER studies comparing different treatment modalities. 
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Choosing	
  the	
  Comparison	
  Group	
  in	
  CER	
  

Link	
  to	
  Hypothesis	
  	
  	
  
In CER, comparison groups should reflect clinically meaningful choices in real world practice.  
The selection of comparison group(s) is thus directly linked to the study question being 
addressed.  Importantly, some comparisons or study questions may not be feasible or valid to be 
answered in observational CER studies due to expected intractable bias or confounding. 

Consequences	
  of	
  Comparator	
  Choice	
  

Confounding	
  	
  
Confounding arises when a risk factor for the study outcome of interest (benefit or harm) directly 
or indirectly affects exposure (e.g., treatment assignment).  Because clinicians routinely make 
treatment decisions based on numerous factors associated with the underlying disease and its 
severity, confounding by indication or severity poses a significant threat to the validity of 
observational CER (see chapter 2 for a detailed discussion).  It is therefore vital to appreciate the 
relationship between confounding and comparator choice.  The existence and magnitude of 
confounding for any given pair of treatments and outcome is directly affected by the choice of 
the comparator.  For example, when comparing the adverse metabolic consequences of 
individual antipsychotic medications in patients with schizophrenia or bipolar disorder, body 
mass index (BMI) is an important potential confounder because it is a strong and established risk 
factor for adverse metabolic outcomes such as type-2 diabetes and plausibly affects the choice of 
agent.  However, the expected magnitude of confounding by BMI strongly depends on the 
specific drugs under study.  A comparison between aripiprazole, an antipsychotic agent with a 
relatively favorable metabolic safety profile, and olanzapine, an agent that exhibits substantial 
metabolic adverse effects, may be strongly confounded by BMI as most clinicians will try to 
avoid olanzapine in patients with increased BMI.  In contrast, a comparison between aripiprazole 
and another antipsychotic agent with less metabolic concerns than olanzapine, such as 
ziprasidone, may be subject to confounding by BMI but to a much lesser degree.   
 
The magnitude of potential confounding generally is expected to be smaller when the 
comparator: 1) has the same indication, 2) has similar contraindications, and 3) shares the same 
treatment modality (e.g., tablet or capsule).  Therefore, selection of a comparator of the same 
treatment modality (e.g., drug vs. drug) and same class within the modality (e.g., β-blocker) may 
result in less confounding than comparison across different treatment modalities or drug classes 
in general.  However, many exceptions exist (e.g., the antipsychotic example above) and 
assessments should be made individually for each treatment comparison of interest.  To 
understand the potential consequences of comparator choices on confounding, a thorough 
understanding of clinical practice, data sources, and methods is necessary.  If suspected 
confounders are available in the data, investigators can empirically evaluate to what extent the 
distribution of these confounders differs between the exposure of interest and the comparator(s).   
 
Propensity score distribution plots by exposure status are particularly useful in this context 
because they allow simple evaluation of the joint differences of many potential confounders 
between treatments.  Areas of nonoverlap between the propensity score distribution in the 
treatment and comparator group identify individuals who, based on their baseline characteristics, 
would either always or never be exposed to the treatment under study and thus cannot be 
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compared without potential for significant bias.1  If potential confounders are not available in the 
data, practical clinical insight and qualitative health services research should be used to form an 
impression of the expected magnitude of confounding for a given treatment comparator pair.  
Sensitivity analyses should then be used to quantify the effects of such unmeasured confounding 
under different sets of assumptions (see chapter 11 for further discussion).2   
 
While a thorough understanding of the impact of comparator choice on the expected magnitude 
of confounding is critical, the comparator choice should be primarily driven by a comparative 
effectiveness question that has been prioritized by the informational need of the stakeholder 
community.  We do not advocate for minimizing confounding through a comparator choice that 
might change the original study question.  A critical assessment of the expected magnitude of 
confounding for the comparison group of choice, however, should guide decisions of study 
design, particularly: 1) the need to obtain additional covariate information if confounding  is 
judged to be uncontrollable in the available data (despite use of advanced analytic methods) and 
2) the need for randomization if confounding is judged uncontrollable in any observational study 
design even with additional data collection (despite use of advanced analytic methods). 

Misclassification	
  
Misclassification is one of the major threats to validity in observational CER studies and is 
discussed in more detail in chapter 4 and chapter 6.  In the context of selecting comparison 
groups for CER, it is important to appreciate that exposure misclassification is often not binary 
but rather more complex as each group (exposure and comparison group) typically represents an 
active treatment and nonuse of the exposure treatment does not imply use of the comparator 
treatment.  For example, consider an epidemiologic study of the effect of treatment A (exposed) 
on outcome Y.  If nonexposure to A is the comparison of interest, this category of exposure is 
directly dependent on exposure to A, as each subject is either exposed or unexposed to A.  
Therefore, misclassification of exposure A would affect the number of those identified as having 
A (exposure group) and those without A (comparison group).  However, in a CER example of 
comparing the effects of drug A versus drug B, misclassification of exposure A does not 
necessarily affect the number of patients with drug B (comparison), as exposure to A is largely 
independent of exposure to B.    
 
In observational CER, the assessment of exposure misclassification has to be made for the 
exposure and comparison group independently, and it is important to recognize that the degree of 
misclassification can be different in the two groups, especially when the comparison groups 
come from different treatment modalities (e.g., drug vs. device).  Generally, the more similar the 
treatment under study and the comparator are in terms of treatment modality and dosage form, 
the less likely it is that exposure or comparator misclassification is different.  For example, there 
is little reason to expect that the degree of exposure misclassification would substantially differ 
between the comparison groups in a claims-based study comparing two oral pharmacologic 
treatments, as information on drug exposure is equally retrieved from pharmacy billing claims 
for both groups.  However, in a comparison between an oral medication for chronic diseases and 
a long-term injectable, the degree of misclassification may be significantly larger for patients 
treated with the oral dosage form mainly due to the different way of administering the drugs 
(patient vs. physician) and sources of information (drug dispensing records vs. office visit 
records).  
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Spectrum	
  of	
  Possible	
  Comparisons	
  	
  
Comparison interventions may include medications, procedures, medical and assistive devices 
and technologies, behavioral change strategies, and delivery systems.  Under certain 
circumstances, no intervention, usual care, historical controls, or comparison groups from other 
data sources may be appropriate and justified for comparative effectiveness questions.  It is again 
important to recognize that comparator choice is directly linked to the comparative effectiveness 
question under study.  In this section, we will discuss methodological considerations for the 
choice of different comparison groups.  

Alternative	
  treatments	
  	
  
Comparing a treatment to a clinically meaningful alternative treatment within the same or a 
similar indication is the most common scenario in CER and also typically the least biased 
comparison.  Multiple modalities and options are often available to treat or diagnose the same 
condition or indication.  Therefore, in many clinical circumstances, no treatment or no testing 
may not meet usual standards of care, and comparisons to alternative treatment options may be 
more clinically meaningful and methodologically valid.  Comparing to alternative treatment or 
testing within the same or similar indication is usually a better choice from a methodological 
standpoint than an untreated/not tested group, as confounding by indication may be nonexistent 
or at least reduced.  However, when different treatments or testing modalities are recommended 
for patients with varying levels of severity of the underlying condition, comparisons within the 
same indication may still result in confounding by severity when not adequately controlled 
through design or analysis. 

No	
  treatment	
  
Comparing to no treatment or no testing may be appropriate in certain clinical situations.  When 
a comparison to no treatment is a clinically appropriate question, researchers may define the no 
treatment group as the absence of exposure or, alternatively, as the absence of exposure and use 
of an unrelated treatment (an active comparator) within the same source population.  Active 
comparators are users of treatments that are not associated with indications for the exposure 
treatment and, importantly, have no effect on the outcome of interest (supported by available 
evidence).3  The goal of employing active comparators who are likely to have similar 
characteristics with the exposure treatment users is to remove or minimize bias due to 
unobserved or incompletely observed differences between treated and untreated patients.  For 
example, in a study assessing the risk of cancer in statin use4, users of glaucoma drugs (like 
statins, a preventive medication class less likely to be used in frail elderly patients5) , were 
employed as an active comparison group with an aim to control for potential bias due to statin 
users being more health-seeking  and adhering to screening procedures and other 
recommendations than nonusers.3  While this approach is likely to have greater applicability to 
questions of safety than CER, it may warrant consideration in addressing some CER questions. 
 
Another important consideration when no treatment is appropriate as a comparison group is how 
to select time 0 for the no-treatment group.  When an active comparison group is employed, the 
choice of time 0 is naturally determined as the start of the active treatment.  When a no-treatment 
comparison group is selected, one way to choose time 0 is to identify the day a health care 
professional made a no treatment decision.  This way, both cohorts will have a meaningful 
inception date for the start of exposure status and outcome identification.  However, in many 
clinical scenarios, such a date may not exist as no treatment is often considered for patients in 
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early stage of disease progression.  Additionally, even if such a date exists, it may be difficult to 
identify in the available data.  Another way to handle this is to allow a different time 0 for the 
treatment and no-treatment groups (time-varying exposure status), and carefully consider 
allocation of person-time to avoid immortal person time bias.6  It is also possible to align the 
person-time and events appropriately by a choice of time scale in a Cox proportional hazard 
regression.7  Researchers should realize that the choice of time 0 in a no-treatment comparison 
group can induce bias, and careful considerations are needed to select clinically appropriate time 
0 and/or to avoid immortal person time bias (as choice for no-treatment is often related to disease 
stage and progression and therefore outcomes). 

Usual	
  or	
  standard	
  care	
  
When a new treatment or testing modality becomes available, patients and health care providers 
may ask a question about the effectiveness of the new treatment when added to the usual or 
standard care.  While this question is legitimate and important, operationalizing the question into 
an answerable research question requires a clear definition of ‘usual or standard care’, including 
a valid operational definition of when usual care was initiated.  The standard care could be no 
treatment or no testing, a single treatment or testing, or a set of existing treatment or testing 
modalities.  In the real world, patients are self-selected or selected by their physicians into 
various treatments for reasons (disease severity, contraindications, socioeconomic status, overall 
prognosis, comorbidities, etc.) that are often associated with the outcomes.  As the first step, 
researchers may have to describe and recognize the diversity in the existing treatment regimens 
or testing modalities in usual care.  Then, a thorough understanding of how treatment selection is 
made in the real world is necessary for accurate definition and operationalization of ‘usual or 
standard care’.  Note that standards of care may vary across geographic regions and treatment 
settings or change over time. It is important to recognize that a “waste basket definition” of 
‘usual or standard care’ (any users of any existing treatments) should be avoided for the reasons 
mentioned above.  Lastly, it is important to recognize that comparisons may be impossible when 
suspected or observed differences between the exposure and comparison groups are associated 
with the outcome of interest and cannot be adequately adjusted and controlled through study 
design or analytic approaches (i.e., in situations with intractable confounding).   

Historical	
  comparison	
  
A historical comparison group may seem to be a natural choice when there is a dramatic shift 
from one treatment to another (e.g., rapid diffusion of a new treatment in practice, sudden change 
in treatment utilization due to evidence or practice changes).  It may also be the only choice 
when there is such strong selection for the new treatment that it is uncontrollable even with 
rigorous methods and randomization is unethical or not realistic for other reasons.  However, in 
any situation, the use of a historical control needs to be justified after considering associated 
methodological issues.   
 
Historical comparison groups will still be vulnerable to confounding by indication or severity 
when information on indication or severity is unmeasured.  To overcome this limitation, an 
instrumental variable (IV) analysis using calendar time as an instrument has been applied.8,9,10,11  
Even in analyses using calendar time as an IV, confounding by indication may still arise if time 
is associated with severity and outcomes of interest.  Using historical comparison groups, any 
changes in the severity or operational definitions of the target condition as well as changes in 
outcome rates or outcome definitions over time could introduce bias in the analyses and must be 
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adequately controlled.  If these time-varying factors are not controllable, the use of a historical 
comparison group cannot be justified.  

Comparison	
  groups	
  from	
  different	
  data	
  sources	
  
Situations may arise when the desired comparison groups are not available within the same data 
sources as the exposure groups.  Multiple data sources can be linked to enhance the validity of 
observational comparative effectiveness and safety studies.12,13,14  Registries have been linked to 
other data sources (e.g., Medicare data, HMO administrative data) to identify long term clinical 
outcomes.12,13  Although device or drug registries may provide detailed data on the use of drugs, 
biologics, and devices and severity of underlying disease and related comorbidities, registries are 
often limited to one product or a class of product, and therefore may not contain information on 
the comparison group of interest.  In this situation, other existing disease, drug, or device 
registries have been considered to identify comparison groups.13,14  Suppose, for example, that 
researchers linked a registry for a device and a separate clinical registry for the target condition 
to Medicare data to identify the exposure and comparison group within Medicare linked patients.  
In this study, both exposure and comparison groups are obtained from the same source 
population (Medicare), however sampling of each group may be different as each registry may 
have collected data through a different mechanism.   
 
At least two potential issues need to be considered when using comparison groups from different 
databases: 1) residual confounding and 2) generalizability (a concept of target populations). 
Residual confounding could arise in comparisons across different data sources for two reasons. 
First, residual confounding might occur due to incomparability of information in exposure and 
comparison groups.  It is common that information about the patient, exposure or comparison 
treatment, and/or outcome are collected differently across different databases, and therefore are 
not comparable between the exposed group and comparison group.  This noncomparability of 
available information for confounder adjustment may lead to increased residual confounding 
when common variables available across the databases are limited.  Second, increased residual 
confounding is also possible because exposed patients and comparison patients may be different 
in observed and unobserved domains as they are sampled differently or may come from a 
different source population.15  In the previous example of a study using two registries linked to 
Medicare, it is possible that two groups are different with respect to demographic characteristics 
and/or geographic regions even though they are all ‘Medicare’ patients.  As many factors 
associated with socioeconomic status that might be associated with treatment choice and 
outcomes are unmeasured, comparisons across different databases could cause increased residual 
confounding.  The problem may be minimized by adequate consideration of hospital clusters and 
with attempts to control for surrogates for socioeconomic status. 
 
A separate issue of generalizability could arise as estimation of  a causal effect in observational 
studies or trials necessitates a target population16,17 and many methods for adjusting for 
confounding such as standardization and inverse-probability-of-treatment-weighting are based on 
the idea of estimating average treatment effect in a target population.18,19  Describing a finite 
population that the effect estimates would be computed for and apply to may be challenging 
when exposure groups and comparison groups come from different databases.  In the previous 
example study of device and clinical registries linked to Medicare, the finite target population 
could be defined as Medicare patients.  However, when each registry is not a random sample of 
Medicare patients but selects a very different sample, the generalizability of the findings from 
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the study (assuming that residual confounding is taken care of) could be complex to understand.  
When using comparison groups from multiple databases, researchers need to clearly describe the 
methods and consider and discuss the issues outlined here to increase the validity and 
interpretability of their findings.   

Operationalizing	
  the	
  Comparison	
  Group	
  in	
  CER	
  	
  
A number of important considerations regarding the definition, measurement, and 
operationalization of exposure are discussed in chapter 4 and apply equally to the 
operationalization of comparator group(s).  Below, we discuss issues that specifically affect the 
operationalization of the comparator(s).   
 
Indication	
  	
  
As discussed, the overriding consideration that should guide comparator choice is the generation 
of evidence that directly informs decisions on treatments, testing, or health care delivery systems 
as defined in the study question.  Thus, another treatment used for the same indication as the 
exposure treatment will typically be used as the comparison group for assessing comparative 
effectiveness.  When a treatment and comparison treatment have a single and specific indication, 
e.g., insulin and glitazones for diabetes, and are not commonly used off-label for other 
conditions, the indication may simply be inferred by the initiation of the treatment.  However, 
because many treatments, particularly drugs, are approved for and/or clinically used to treat 
multiple indications, the appropriate indication will often have to be ensured by defining the 
indication and restricting the study population.  Defining the indication typically involves 
requirement for the presence of certain diagnoses, the absence of diagnoses for alternative 
indications, or a combination of both,20 but also depends on how the comparative effectiveness 
question was formulated, i.e., for what target population and whether the population is defined 
by indications and contraindications.  It is important to recognize that restriction of the study 
population to patients with the same indication does not necessarily remove confounding by 
severity.21  
 
For clinical effectiveness or safety questions, nonusers or users of other treatments (active 
comparators) with different indications may be considered as comparison groups.  For nonuser 
comparisons, restriction of nonusers to those with similar indications is advisable. However, 
such restriction is unlikely to address healthy user bias and may necessitate randomization to 
study such clinical effectiveness questions.  Active comparators, as explained in the previous 
section, are generally more appropriate, particularly for safety questions, and may reduce or 
eliminate healthy user bias.  

Initiation	
  
There are well recognized advantages in studying new initiators of treatments, which is why the 
new user design is considered the gold standard in pharmacoepidemiology.22 Specifically, a new 
user design prevents under-ascertainment of early events and avoids problems arising from 
confounders that may be affected by treatment in prevalent users.22  It also prevents bias arising 
from prevalent users being long-term adherers who may also follow other healthy behaviors.4,23 
See chapter 2 for a complete discussion of the new user design. 
 
Inclusion of prevalent users may be justified, however, when outcomes of interest are extremely 
rare or occur after long periods of use so that a new user design may not be feasible.  Careful 
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consideration of the benefits and potential bias arising from the inclusion of prevalent users 
should be weighed, and the evidence generated by the design may be considered hypothesis 
generating rather than hypothesis testing.  Comparisons between incident and prevalent users 
should be avoided.  As for the exposure of interest, introduction of immortal time through 
incorrect classification of person-time has to be avoided for both the exposure and comparison 
group.6  

Exposure	
  Time	
  Window	
  	
  
As discussed in chapter 4, each exposure group requires the definition of an exposure-time 
window that corresponds with the period where therapeutic benefit and/or risk would plausibly 
occur and could substantially differ from the actual exposure to the treatment.24  Importantly, this 
exposure window can differ between the exposure of interest and the comparator(s), and the 
determination of the appropriate time window should be made individually for each group based 
on the pharmacologic or therapeutic profile of the intervention.  Time-to-event analyses 
including Cox proportional hazard regression may be appropriate when comparing two 
treatments with expected differences in the timing of beneficial or safety outcomes.  
 
In situations with uncertainty regarding the appropriate duration of the exposure window(s), 
sensitivity analyses should be performed to assess whether results are sensitive to different 
specifications of the exposure window(s).  In addition, performing both an as-treated analysis 
(where patients are censored at the end of the exposure-time window) as well as an intention-to-
treat (ITT, i.e., first-exposure carried forward analysis) may help understand the impact of 
nonadherence, misclassification and censoring on the observed results.  However, it is important 
to recognize that the utility of ITT analyses are generally limited when assessing long-term 
effects. Conversely, as-treated analyses could cause bias due to informative censoring (stopping 
is associated with the outcome of interest), so methods to model and address informative 
censoring should be considered.25  Comparisons between implantable devices and drug 
treatments present a special case of ITT analysis as the ‘as treated’ and ITT specifications will 
result in very similar exposure durations for devices (because of the inability to discontinue an 
implantable device other than cases of device failure/removal), but may result in dramatically 
different exposure durations for drug treatments with high discontinuation rates; this must be 
taken into account when determining the followup periods that should be included in study 
analyses for both comparators.   

Nonadherence	
  
Nonadherence to prescribed medications is common and a recognized problem for the health 
care system.  Nonadherence may be different between treatment and comparator(s) due to 
differences in complexity of dosing regimens and side effect profiles.  Because CER aims to 
compare benefits and harms of different interventions in real-world conditions, treatment effects 
should be compared at adherence levels observed in clinical practice rather than adjusting for the 
difference in adherence.  When adherence to a comparator is poorer than adherence to the 
exposure treatment of interest and both treatments have similar benefits when used as prescribed, 
the benefit of the exposure treatment will be superior due to better adherence.  Since the aim of 
the study is estimation of drug effects in real world situation and patients, the results are valid.  
However, it is important to report adherence measures for each of the treatments as part of the 
study results so that findings can be interpreted under appropriate consideration of the observed 
adherence patterns.  Requiring run-in periods to assure that adherence is satisfactory and more 
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equal across groups26 may be problematic because such practice could introduce immortal time 
bias (if the run-in period is included in the analysis) or be unable to estimate effects in the early 
phase of treatment (if the run-in period is excluded from analysis).    

Dose/Intensity	
  of	
  Drug	
  Comparison	
  	
  	
  
After the study population has been defined and exposure and comparison groups have been 
chosen, it is important to appreciate the effects of dose on outcomes.  When there is a dose effect 
on the outcome of interest, the dose of exposure and comparison drug(s) will drive the direction 
and the magnitude of effects.  A lower dose comparison drug may make the study drug look 
more effective, while a higher dose comparison drug may make the study drug look safer.  
Therefore, researchers first should assess and report the dose in each group.  When appropriate 
and possible, comparisons should be made for exposure and comparison group at various 
clinically equivalent dose levels.  It is important to recognize that comparisons between different 
dose levels may potentially result in confounding by severity, as higher doses are likely to be 
given to patients with more severe disease. 

Considerations	
  for	
  Comparisons	
  across	
  Different	
  Treatment	
  Modalities	
  	
  	
  	
  	
  
Many principles in the previous sections are primarily discussed in the context of medications.  
In this section we specifically focus on the important methodological issues for comparisons 
across different treatment modalities.  

Confounding	
  by	
  indication	
  or	
  severity	
  
For some conditions, drugs may be used for patients with a milder disease and surgery might be 
reserved for those with more severe disease.  In many circumstances, a step-wise approach to 
treat a condition may be recommended or practiced (e.g., consider a surgery if a drug treatment 
failed).  For other diseases like cancer, early stage disease may be treated with surgical 
procedures whereas more advanced disease might be treated with chemotherapy and/or radiation, 
or combinations of multiple modalities.  Although not different from within drug or within 
procedure/surgery comparisons, understanding the recommendations from guidelines and 
standards of practice is necessary to assess the direction and magnitude of potential confounding 
by indication or severity when comparing across different treatment modalities.  

Selection	
  of	
  healthier	
  patients	
  into	
  more	
  invasive	
  treatments	
  	
  
While invasiveness of surgeries and procedures varies, they typically pose short-term risks in 
exchange for long-term benefits.  Therefore, patients who are not in good general condition due 
to severe target disease or comorbidities are less likely to be considered for invasive procedures. 
This potential bias due to selection of healthier patients into more invasive treatment is more 
problematic in comparisons across different treatment modalities, especially when indications 
and severity are not adequately accounted for in the selection of exposure and comparison 
groups. Being selected for surgeries or procedures may be a surrogate for better general 
conditions including having less severe disease and comorbid conditions as well as better 
functional and psychological well-being. Furthermore, surgery/procedures are more expensive 
and typically offered through specialists’ care. Therefore, selection of wealthier and more health 
seeking patients into surgery/procedures may be expected. 
 
The direction of bias may be unpredictable when both confounding by indication/severity and 
healthy user bias come into play.  In general, controlling for healthy user bias is challenging and 
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may only be achieved in observational studies when information on health behaviors or their 
surrogates are available in all or a subset of patients, or a good instrument exists to allow a valid 
instrumental variable analysis.  Sensitivity analyses assessing the impact of healthy user bias is 
necessary and more research is needed to understand factors associated with the selection of 
patients into surgery/procedures to understand the magnitude of potential healthy user bias in the 
device-drug comparison settings.   

Time	
  from	
  disease	
  onset	
  to	
  a	
  treatment	
  
If not appropriately accounted for, lag-times between date of initial diagnosis and date of 
treatment may create bias in studies assessing comparative or clinical effectiveness.  For 
example, when assessing comparative survival after heart transplantation, there is a waiting time 
between referral to surgery and receipt of transplantation.27  Currently, most patients are treated 
with (or bridged by) left ventricular assist devices (LVAD).  Comparing the survival after LVAD 
to that after transplantation will be biased (i.e., immortal time bias) if researchers fail to take the 
sequence of these treatments into account and adequately allocate person-time on the first 
treatment (e.g., LVAD).   
 
Another pertinent example of immortal person-time bias in clinical effectiveness research is the 
comparison of survival for responders and nonresponders to chemotherapy.28  As responders to 
chemotherapy have to survive through the period of responding to chemotherapy to be identified 
as responders, this comparison will suffer from ‘time-to-response’ or immortal person time bias 
if not adequately controlled.28  This problem has recently been described by Suissa (as 
mentioned in chapter 2) using pharmacoepidemiological examples.  The same problem arises 
with even greater magnitude when a medical treatment is compared to a surgical treatment and 
patients are treated with the medical treatment prior to being referred to the surgery if surgery is 
considered for more advanced disease (or vice versa).  Careful attention to the time from initial 
diagnosis and general sequence of different treatment modalities is needed to prevent immortal 
person-time bias.  

Different	
  magnitude	
  of	
  misclassification	
  in	
  drug	
  exposure	
  vs.	
  procedure	
  comparison	
  
Assessment of drug exposure in existing data sources always requires assumptions, as 
longitudinal records that measure patients’ actual intake of medications are not available in large 
databases.  Pharmacy records in many administrative databases for government or commercial 
insurance agencies are considered the ‘gold-standard’ in pharmacoepidemiology as they capture 
longitudinal pharmacy dispensing in a large number of subjects.  However, pharmacy dispensing 
does not provide information on the actual intake of medications by patients, and most drug 
exposure is chronic rather than acute.  Therefore, defining drug exposure using dispensing data 
requires certain assumptions and some degree of exposure misclassification is always expected. 
On the other hand, assessment of exposure to surgery or procedure (especially major procedures 
that are well reimbursed or clinically important) is more straightforward, and their identification 
is likely to be less affected by misclassification as these one-time or acute major clinical events 
are usually accurately recorded in administrative databases or registries.  When comparing drug 
exposures to surgeries or procedures, researchers need to recognize that misclassification is 
likely not comparable in both groups and need to assess how this potential misclassification 
affects their results.     



 Chapter 5. Comparator Selection  

Page 88 of 228 
 

Provider	
  effects	
  in	
  devices	
  or	
  surgeries	
  
Characteristics of the operating physician and institution where the device implantation or 
surgery was carried out are important factors to consider when evaluating the comparative 
effectiveness of medical devices or surgeries.  Certain physician and institutional characteristics 
such as experience and specialty are known to affect outcomes, particularly during the peri-
procedural period.  A direct relationship between level of physician experience and better patient 
outcomes has been documented for technically complex procedures and implantations like 
angioplasty, stenting and various surgeries.29,30,31,32  A relationship between larger hospital 
volume and favorable patient outcomes for a variety of procedures is also well-
documented.30,31,33,34,35,36,37  While these factors are more likely to behave as confounders than as 
effect measure modifiers, stratification must first be carried out to inform decisions on how to 
handle these factors.  Therefore, ability to identify physicians and institutes for a device 
implantation or surgery and characteristics such as volume of procedures that are known to affect 
outcomes is necessary.  In addition, exploring physician effects in the study population to 
account for provider effects is necessary to conduct valid comparisons including devices or 
surgeries. 

Adherence	
  to	
  drugs	
  and	
  device	
  failure	
  or	
  removal	
  
Patients who are on medications could have various degrees of adherence from completely 
stopping, skipping doses, to taking medications as prescribed. Measuring adherence is not 
impossible but requires assumptions in most data sources. On the other hand, implantable 
devices or surgical procedures do not generally have adherence issues unless there is a device 
failure or a complication that requires device removal.  For most implantable devices, removal is 
a major procedure and therefore likely to be captured accurately. However, a unique problem 
could arise for devices with a function to be turned off (without being removed).  How to take 
adherence and device failure or removal into account depends on the goal of each study and how 
the researchers define effectiveness. If the goal is to assess effectiveness in real world patients 
and practice where nonadherence is common and some degree of device failure or removal is 
expected, simply comparing two different modalities without adjusting for adherence or device 
failure should be appropriate. It is recommended that compliance or device failure rates are 
assessed and reported.  However, if the goal is to compare the conditional effectiveness assuming 
perfect adherence or no device failure, the question should be clearly stated and the appropriate 
design and/or method for adjustment needs to be employed.  

Conclusion	
  
Understanding the impact of comparator choice on study design is important when conducting 
observational CER.  While this choice affects the potential for and magnitude of confounding 
and other types of bias, the selection of a comparator group should be primarily driven by a 
comparative effectiveness question that has been prioritized by the informational need of the 
stakeholder community.  The overriding consideration that should guide comparator choice is the 
generation of evidence that directly informs decisions on treatments, testing, or health care 
delivery systems as defined by the study question.  Researchers engaged in observational CER 
need to keep in mind that there may be questions (comparisons) not validly answered due to 
intractable bias in observational CER.   
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Comparator	
  Selection	
  for	
  an	
  Observational	
  CER	
  Protocol	
  or	
  
Proposal	
  
 

Guidance Key Considerations Check 
Choose concurrent, active comparators from the 
same source population (or justify use of no-
treatment comparisons/historical comparators/ 
different data sources) 

- Comparator choice should be primarily driven by a 
comparative effectiveness question prioritized by 
informational needs of the stakeholder community and 
secondarily as a strategy to minimize bias 

 

Discuss potential bias associated with comparator 
choice and methods to minimize such bias, when 
possible 

- Be sure to also describe how study design/analytic methods 
will be used to minimize bias  

Define time 0 for all comparator groups in 
describing planned analyses 

- Choice of time 0, particularly in no-treatment or usual care, 
should be carefully considered in light of potential immortal 
person time bias and prevalent user bias 

- Employ a new user design as a default, if possible  
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Chapter	
  6.	
  Outcome	
  Definition	
  and	
  Measurement	
  

Abstract	
  
This chapter provides an overview of considerations for the development of outcome measures 
for observational comparative effectiveness research (CER) studies, describes implications of  
the proposed outcomes for study design, and enumerates issues of bias that may arise in 
incorporating the ascertainment of outcomes in observational research and means of evaluating, 
preventing and/or reducing these biases.  Development of clear and objective outcome 
definitions that correspond to the nature of the hypothesized treatment effect and address the 
research questions of interest, along with validation of outcomes or use of standardized patient 
reported outcome (PRO) instruments validated for the population of interest, contribute to the 
internal validity of observational CER studies.  Attention to collection of outcome data in an 
equivalent manner across treatment comparison groups is also required.  Use of appropriate 
analytic methods suitable to the outcome measure and sensitivity analysis to address varying 
definitions of at least the primary study outcomes are needed to draw robust and reliable 
inferences.  The chapter concludes with a checklist of guidance and key considerations for 
outcome determination and definitions for observational CER protocols. 

Introduction	
  
The selection of outcomes to include in observational comparative effectiveness research (CER) 
studies involves the consideration of multiple stakeholder viewpoints (provider, patient, payer, 
regulatory, industry, academic and societal) and the intended use of resulting evidence for 
decision making.  It is also dependent on the level of funding and scope of the study.  These 
studies may focus on clinical outcomes such as recurrence-free survival from cancer or coronary 
heart disease mortality, general health-related quality of life measures such as the EQ-5D and the 
SF-36 or disease-specific scales, like the uterine fibroid symptom and quality of life 
questionnaire (UFS-QOL), and/or health resource utilization or cost measures.  As with other 
experimental and observational research studies, the hypotheses or study questions of interest 
must be translated to one or more specific outcomes with clear definitions. 
 
The choice of outcomes to include in a CER study will in turn drive other important design 
considerations such as the data source(s) from which the required information can be obtained 
(see chapter 8), the frequency and length of followup assessments to be included in the study 
following initial treatment, and the sample size, which is influenced by the expected frequency of 
the outcome in addition to the magnitude of relative treatment effects and scale of measurement. 

 
In this chapter we  provide an overview of types of outcomes with emphasis on those most 
relevant to observational CER studies, considerations in defining outcomes, the process of 
outcome ascertainment, measurement and validation, design and analysis considerations, and 
means to evaluate and address  bias that may arise. 

Conceptual	
  models	
  of	
  health	
  outcomes	
  
In considering the range of health outcomes that may be of interest to patients, health care 
providers, and other decision-makers, medical conditions, impact to health-related or general 
quality of life, and resource utilization are key areas of focus.  To address the interrelationships 
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of these outcomes, some conceptual models have been put forth by researchers with a particular 
focus on health outcomes studies. Two such models are described here.  
 
Wilson and Cleary proposed a conceptual model or taxonomy integrating concepts of biomedical 
patient outcomes and measures of health related quality of life, which is divided into five levels: 
biological and physiological factors, symptoms, functioning, general health perceptions, and 
overall quality of life.1  The authors discuss causal relationships between traditional clinical 
variables and measures of quality of life that address the complex interactions of biological and 
societal factors on health status, summarized in Table 6.1.   
 
Table 6.1. Wilson and Cleary’s Taxonomy of Biomedical and Health Related Quality of 
Life Outcomes 
 

Level Health concepts represented Relationship with preceding level(s) 
Biological and 
Physiological Factors 

Genetic and molecular factors.  

Symptoms Physical, psychosocial, emotional, 
and psychological symptoms. 

Complex; symptoms may or may not be 
associated with biological or 
physiological factors (and vice versa). 

Functional Status Physical, social, role, 
psychological, and other domains 
of functioning. 

Symptoms and biological and 
physiological factors are correlated with 
functional status, but may not 
completely explain variations. Other 
patient-specific factors (e.g., personality, 
social environment) are also important 
determinants. 

General Health 
Perceptions 

Subjective rating of general health. Integrates all health concepts in the 
preceding levels; one of the best 
predictors of use of general medical and 
mental health services.  

Overall Quality of 
Life 

Summary measure of quality of 
life. 

Although all preceding levels contribute 
to overall quality of life, general 
measures may not be strongly correlated 
with objective life circumstances as 
individuals may adjust 
expectations/goals with changing 
circumstances. 

 
An alternative model, the ECHO (Economic, Clinical, Humanistic Outcomes) Model was 
developed for planning health outcomes and pharmacoeconomic studies and goes a step further 
than the Wilson and Cleary model in incorporating costs and economic outcomes and their 
interrelationships with clinical and humanistic outcomes (Figure 6.1).2  The ECHO model does 
not explicitly incorporate characteristics of the patient as an individual or psychosocial factors to 
the extent of the Wilson and Cleary model however. 
 
Figure 6.1.  The ECHO Model 
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See Kozma CM, Reeder CE, Schultz RM. Economic, Clinical, and Humanistic Outcomes: A Planning Model for 
Pharmacoeconomic Research. Clin Ther 1993;15(6):1121-1132.  This figure is copyrighted by Elsevier Inc. and 
reprinted with permission. 
 
As suggested by the complex interrelationships between different levels and types of health 
outcomes, different terminology and classifications may be used and there are areas of overlap 
between the major categories of outcomes important to patients.  In this chapter, we will discuss 
outcomes according to the broad categories of Clinical, Humanistic, and Economic and 
Utilization outcome measures. 

Outcome	
  measurement	
  properties	
  
The properties of outcome measures that are an integral part of an investigator’s evaluation and 
selection of appropriate measures include reliability, validity, and variability.  Reliability is the 
degree to which a score or other measure remains unchanged upon test and re-test (when no 
change is expected), or across different interviewers or assessors.  It is measured by statistics 
including kappa, and the inter- or intra-class correlation coefficient.  Validity, broadly speaking, 
is the degree to which a measure assesses what it is intended to measure, and types of validity 
include face validity (the degree to which  users or experts perceive that a measure is assessing 
what it is intended to measure), content validity (the extent to which a measure accurately and 
comprehensively measures what it is intended to measure), and construct validity (the degree to 
which an instrument accurately measures a nonphysical attribute or construct such as depression 
or anxiety which is itself a means of summarizing or explaining different aspects of the entity 
being measured).3  Variability usually refers to the distribution of values associated with an 
outcome measure in the population of interest, with a broader distribution or range of values said 
to show more variability. 
 
Responsiveness is another property usually discussed in the context of PROs, but extendable to 
other measures, representing the ability of a measure to detect change in an individual over time. 
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All of these measurement properties may affect the degree of measurement error or 
misclassification that an outcome measure is subject to, with the consideration that the 
properties themselves are specific to the population and setting in which the measures are used.  
Issues of misclassification and considerations in reducing this type of error are discussed further 
in the section on “Avoidance of bias in study design”. 

Clinical	
  outcomes	
  
Clinical outcomes are perhaps the most common category of outcome to be considered in CER 
studies.  Medical treatments are developed and must demonstrate efficacy in pre-approval 
clinical trials to prevent the occurrence of undesirable outcomes such as coronary events, 
osteoporosis, or death, to delay disease progression such as in rheumatoid arthritis, to hasten 
recovery or improve survival from disease, such as cancer or H5N1 influenza, or to manage or 
reduce the burden of chronic diseases including diabetes, psoriasis, Parkinson’s, and depression.  
Post-approval observational CER studies are often needed to compare newer treatments against 
standard of care, to obtain real-world data on effectiveness as treatments are used in different 
medical care settings and broader patient populations than those studied in clinical trials, and to 
increase understanding of the relative benefits and risks of treatments by weighing quality of life, 
cost, and safety outcomes alongside clinical benefits.  For observational studies, this category of 
outcomes generally focuses on clinically meaningful outcomes such as time between disease 
flares, number of swollen, inflamed joints, or myocardial infarction, though feasibility 
considerations sometimes dictate the use of intermediate. 

Definitions	
  of	
  Clinical	
  Outcomes	
  

Temporal	
  aspects	
  
The nature of the disease state to be treated, the mechanism, and the intended effect of the 
treatment under study determine whether the clinical outcomes to be identified are incident (a 
first or new diagnosis of the condition of interest), prevalent (existing disease), or recurrent (new 
occurrence or exacerbation of disease in a patient who has a previous diagnosis of that 
condition).  The disease of interest may be chronic (a long-term or permanent condition), acute 
(a condition with a clearly identifiable and rapid onset), transient (a condition that comes and 
goes) or episodic (a condition that comes and goes in episodes), or have more than one of these 
aspects. 

Subjective	
  vs.	
  objective	
  assessments	
  
Most clinical outcomes involve a diagnosis or assessment by a health care provider.  These may 
be recorded in a patient’s medical record as part of routine care, coded as part of an electronic 
health record (EHR) or administrative billing system using systems such as ICD-9 or ICD-10, or 
collected specifically for a given study. 
 
While there are varying degrees of subjectivity involved in most assessments by health care 
providers, objective measures are those that are not subject to a large degree of individual 
interpretation, and are likely to be reliably measured across patients in a study, by different 
health care providers, and over time.  Laboratory tests may be considered objective measures in 
most cases and can be incorporated as part of a standard outcome definition to be used for a 
study when appropriate.  Some clinical outcomes, such as all-cause mortality, can be ascertained 
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directly and may be more reliable than measures that are subject to interpretation by individual 
health care providers, such as angina or depression. 
 
Instruments have been developed to help standardize the assessment of some conditions for 
which a subjective clinical assessment might introduce unwanted variability.  Consider the 
example of a study of a new psoriasis treatment.  Psoriasis is a chronic skin condition that causes 
lesions affecting varying amounts of body surface area, with varying degrees of severity.  While 
a physician may be able to assess improvement within an individual patient, a quantifiable 
measure that would be reproducible across patients and raters improves the information value of 
comparative trials and observational studies of psoriasis treatment effectiveness.  An outcome 
assessment that relies on purely subjective assessments of improvement such as, “Has the 
patient’s condition improved a lot, a little, or not at all?” is vulnerable to measurement error that 
arises from subjective judgments or disagreement among clinicians as to what comprises and 
how to rate the individual categories, often resulting in low reproducibility or inter-rater 
reliability of the measure.  In the psoriasis example, an improved measure of the outcome would 
be a standardized assessment of the severity and extent of disease expressed as percentage of 
affected body surface area, such as the Psoriasis Area Severity Index or PASI Score.4  The PASI 
score requires rating the severity of target symptoms [erythema (E), infiltration (I), and 
desquamation (D)] and area of psoriatic involvement (A) for each of four many body areas [head 
(h), trunk (t), upper extremities (e), lower extremities (l)]. Target symptom severity is rated on a 
0-4 scale; area of psoriatic involvement is rated on a 0-6 scale, with each numerical value 
representing a percentage of area involvement.4  The final calculated score ranges from 0 (no 
disease) to 72 (severe disease), with the score contribution of each body area weighted by its 
percentage of total body area (10, 20, 30, and 40% of body area for head, upper extremities, 
trunk, and lower extremities, respectively).4  By using changes in the PASI score instead of 
subjective clinician assessments of overall performance, the PASI score increases reproducibility 
and comparability across studies that use the score.   
 
Relatedly, the FDA has provided input on types of Clinical Outcome Assessments (COAs) that 
may be considered for qualification for use in clinical trials, with the goals of increasing the 
reliability of such assessments within a specific context of use in drug development and 
regulatory decision-making to measure a specific concept with a specific interpretation.  
Contextual considerations include the specific disease of interest, target population, clinical trial 
design and objectives, regionality, and mode of administration.  The types of COAs described 
are:5 
 

Patient-reported outcome (PRO) assessment: A measurement based on a report that 
comes directly from the patient (i.e., study subject) about the status of particular aspects 
of or events related to a patient’s health condition. PROs are recorded without 
amendment or interpretation of the patient’s response by a clinician or other observer. A 
PRO measurement can be recorded by the patient directly, or recorded by an interviewer 
provided that the interviewer records exactly the patient’s response. 
 
Observer reported outcome (ObsRO) assessment: An assessment that is determined by 
an observer who does not have a background of professional training that is relevant to 
the measurement being made, i.e., a nonclinician observer such as a teacher or caregiver. 
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This type of assessment is often used when the patient is unable to self-report (e.g., 
infants, young children). An ObsRO assessment should only be used in the reporting of 
observable concepts (e.g., signs or behaviors); ObsROs cannot be validly used to directly 
assess symptoms (e.g., pain) or other unobservable concepts. 
 
Clinician-reported outcome (ClinRO) assessment: An assessment that is determined 
by an observer with some recognized professional training that is relevant to the 
measurement being made. 
 

Other considerations related to use of PROs for measurement of health-related quality of life and 
other concepts are addressed later on in this chapter. 

Composite	
  endpoints	
  
Some clinical outcomes are composed of a series of items, and are referred to as composite 
endpoints.  A composite endpoint is often used when the individual events included in the score 
are rare, and/or when it makes biological and clinical sense to group them.  The study power for 
a given sample size may be increased when such composite measures are used as compared with 
individual outcomes, since by grouping numerous types of events into a larger category, the 
composite endpoint will occur more frequently than any of the individual components.   As 
desirable as this can be from a statistical point of view, challenges include interpretation of 
composite outcomes that incorporate both safety and effectiveness and broader adoption of 
reproducible definitions that will enhance cross-study comparisons.  For example, Kip et al.6  
point out that there is no standard definition for MACE (major adverse cardiac events), a 
commonly used outcome in clinical cardiology research.  Kip and colleagues conducted analyses 
to demonstrate that varying definitions of composite endpoints, such as MACE, can lead to 
substantially different results and conclusions. The investigators utilized the DEScover registry 
patient population, a prospective observational registry of drug-eluting stent (DES) users, to 
evaluate differences in 1-year risk for three definitions of MACE in comparisons of patients with 
and without MI, and patients with multi-lesion stenting vs. single-lesion stenting (also referred to 
as percutaneous coronary intervention or PCI).  The varying definitions of MACE included one 
related to safety only [composite of death, myocardial infarction (MI), and stent thrombosis 
(ST)], and two relating to both safety and effectiveness [composite of death, MI, ST, and either 
1) target vessel revascularization (TVR) or 2) any repeat vascularization]. 6 When comparing 
patients with and without acute MI, the three definitions of MACE yielded very different hazard 
ratios.  The safety only definition of MACE yielded a hazard ratio of 1.75 (p<0.05), indicating 
that patients with acute MI were at greater risk of 1-year MACE.  However, for the composite of 
safety and effectiveness endpoints, the risk of 1-year MACE was greatly attenuated and no 
longer statistically significant.6  Additionally, when comparing patients with single versus 
multiple lesions treated with PCI, the three definitions also yielded different results; while the 
safety only composite endpoint demonstrated that there was no difference in 1-year MACE, 
adding TVR to the composite endpoint definition led to a hazard ratio of 1.4 (p<0.05) for multi-
lesion PCI versus single-lesion PCI.6 This research serves as a cautionary tale for the creation 
and use of composite endpoints.  Not only can varying definitions of composite endpoints such 
as MACE lead to substantially different results and conclusions, results must be carefully 
interpreted, especially in the case where safety and effectiveness endpoints are combined.  
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Intermediate	
  endpoints	
  	
  
The use of an intermediate or surrogate endpoint is more common to clinical trials to 
observational studies.  This type of endpoint is often a biological marker for the condition of 
interest, and may be used to reduce the followup period required to obtain results from a study of 
treatment effectiveness.  An example would be the use of measures of serum lipids as endpoints 
in randomized trials of the effectiveness of statins, for which the major disease outcomes of 
interest to patients and physicians are a reduction in coronary heart disease incidence and 
mortality.  The main advantages of intermediate endpoints are that the followup time required to 
observe possible effects of treatment on these outcomes may be substantially shorter than for the 
clinical outcome(s) of primary interest, and if they are measured on all patients, the number of 
outcomes for analysis may be larger.  Similar to composite endpoints, using intermediate 
endpoints will increase study power for a given sample size as compared with outcomes that may 
be relatively rare, such as primary myocardial infarction.  Surrogate or intermediate outcomes, 
however, may provide an incomplete picture of the benefits or risk.  Treatment comparisons 
based on intermediate endpoints may differ in magnitude or direction from those based on major 
disease endpoints, as evidenced in a clinical trial of nifedipine versus placebo,7,8 as well as other 
clinical trials of antihypertensive therapy.9  On one hand, Nifedipine, a calcium channel blocker, 
was superior to placebo in reduction of onset of new coronary lesions; however, mortality was 
six-fold greater among patients who received Nifedipine versus placebo.7  
 
Freedman and colleagues provided recommendations regarding the use of intermediate 
endpoints.10  Investigators should consider the degree to which the intermediate endpoint is 
reflective of the main outcome, as well as the degree to which effects of the intervention may be 
mediated through the intermediate endpoint.  Psaty and colleagues have cautioned that because 
drugs have multiple effects, to the extent that a surrogate endpoint is likely to measure only a 
subset of those effects, results of studies based on surrogate endpoints may be a misleading 
substitute for major disease outcomes as a basis for choosing one therapy over another.9  
 
Table 6.2.  Clinical Outcome Definitions and Objective Measures 
 

Conceptual Temporal aspects Objective measure 
Incident invasive breast cancer Incident SEER or state cancer registry 

data 
Myocardial infarction Acute, transient (in regard 

to elevated Troponin-I) 
Review of laboratory test results 
for troponin and other cardiac 
enzymes for correspondence 
with a standard clinical 
definition 

Psoriasis Chronic, prevalent Psoriasis Area Severity Index 
(PASI score) or percent body 
surface area assessment 

Systematic lupus 
erythematosus (SLE) 

Chronic condition with 
recurrent flares (episodes 
may have acute onset)  

Systemic Lupus Erythematosus 
Disease Activity Index 
(SLEDAI) 
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Selection	
  of	
  clinical	
  outcome	
  measures	
  
Identification of a suitable measure of a clinical outcome for an observational CER study is a 
process in which various aspects of the nature of the disease or condition under study should be 
considered along with sources of information by which the required information may be feasibly 
and reliably obtained.   
 
The choice of outcome measure may follow directly from the expected biological mechanism of 
action of the intervention(s) under study and its impact on specific medical conditions.  For 
example, the medications tamoxifen and raloxifene are selective estrogen receptor modulators 
that act through binding to estrogen receptors to block the proliferative effect of estrogen on 
mammary tissue and reduce the long-term risk of primary and recurrent invasive and 
noninvasive breast cancer.11  Broader or narrower outcome definitions may be appropriate to 
specific research questions or designs.  In some situations, however, the putative biologic 
mechanism may not be well understood.  Nonetheless, studies addressing the clinical question of 
comparative effectiveness of treatment alternatives may still inform decision making, and 
advances in understanding of the biological mechanism may follow discovery of an association 
through an observational CER study. 
 
The selection of clinical outcome measures may be challenging when there are many clinical 
aspects that may be of interest, and a single measure or scale may not adequately capture the 
perspective of the clinician and patient.  For example, in evaluating treatments or other 
interventions that may prolong the time between flares of SLE, researchers may use an index 
such as the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) which measures 
changes in disease activity.  Or they may use the SLICC/ACR damage index, an instrument 
designed to assess accumulated damage since the onset of the disease.12,13,14  This measure of 
disease activity has been tested in different populations and has demonstrated high reliability, 
evidence for validity, and responsiveness to change.15  Yet, multiple clinical outcomes may be of 
interest in studying treatment effectiveness in SLE, in addition to disease activity, such as 
reduction or increase in time to flare, reduction in corticosteroid use, or occurrence of serious 
acute manifestations (e.g., acute confusional state or acute transverse myelitis).16  

Interactions	
  with	
  the	
  health	
  care	
  system	
  
One should first determine the source of reporting or detection for a medical condition that may 
lead to initial contact with the medical system.  The manner in which the patient presents for 
medical attention may provide insights as to data source(s) that may be useful in studying the 
condition.  The decision whether to collect information directly from the physician, through 
medical record abstraction (and where the relevant records might be found), directly from 
patients, and/or through use of electronic health records (EHRs) and/or administrative claims 
data will follow from this. For example, general hospital medical records are unlikely to provide 
the key components of an outcome such as respiratory failure which requires information about 
use of mechanical ventilation. In contrast, hospital medical records are useful for the  study  of 
myocardial infarction, which must be assessed and treated in a hospital setting and are nearly 
always accompanied by an overnight stay.  General practice physician office records and 
emergency department records may be useful in studying the incidence of influenza A or 
urticaria, with selection of which of these depending on the severity of the condition.  A 
prospective study may be required to collect clinical assessments of disease severity using a 
standard instrument, as these are not consistently recorded in medical practice and are not coded 
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in administrative data sources.  Chapter 8, on data sources, provides additional information on 
selection of appropriate sources of data for an observational CE study. 

Humanistic	
  Outcomes	
  
While outcomes of interest to patients generally include those of interest to physicians, payers, 
regulators and others, they are often differentiated by two characteristics:  (1) they are clinically 
meaningful with practical implications for disease recognition and management (i.e., less interest 
in intermediate pathways with no clear clinical impact), and (2) they include reporting of 
outcomes based on a patient’s unique perspective, e.g., patient reported scales that indicate the 
pain level, degree of functioning, etc.  This section deals with measures of health-related quality 
of life (HRQoL) and the range of measures collectively described as patient-reported outcomes 
(PROs), which include measures of HRQoL.  Other humanistic perspectives relevant to patients 
(e.g., economics, utilization of health services, etc.) are covered elsewhere. 

Health	
  related	
  quality	
  of	
  life	
  
Health-related quality of life (HRQOL) measures the impact of disease and treatment on the lives 
of patients and is defined as “the capacity to perform the usual daily activities for a person’s age 
and major social role”.17  HRQOL commonly includes physical functioning, psychological well-
being, and social role functioning.  This construct comprises outcomes from the patient 
perspective and are measured by asking the patient or surrogate reporters about them. 
 
HRQoL is an outcome increasingly used in randomized and nonrandomized studies of health 
interventions, and as such the US Food and Drug Administration (FDA) has provided clarifying 
definitions of HRQoL and of improvements in HRQoL. The FDA defines HRQoL as follows: 
“HRQL is a multi-domain concept that represents the patient’s general perception of the effect of 
illness and treatment on physical, psychological, and social aspects of life. Claiming a statistical and 
meaningful improvement in HRQL implies: (1) that all HRQL domains that are important to 
interpreting change in how the clinical trial’s population feels or functions as a result of the targeted 
disease and its treatment were measured; (2) that a general improvement was demonstrated; and (3) 
that no decrement was demonstrated in any domain.”18 

Patient-­‐reported	
  outcomes	
  
Patient-reported outcomes (PROs) include any outcome based on data provided by patients or 
people who can report on their behalf (proxies), as opposed to data provided from other 
sources.19  PROs refer to patient ratings and reports about any of several outcomes, including 
health status, health related quality of life, quality of life defined more broadly, symptoms, 
functioning, satisfaction with care, and satisfaction with treatment. Patients can also report about 
their health behaviors, including adherence and health habits.  Patients may be asked to directly 
report information about clinical outcomes or health care utilization and out of pocket costs when 
these are difficult to measure through other sources.  The FDA defines a PRO as “A measurement 
based on a report that comes directly from the patient (i.e., study subject) about the status of a 
patient’s health condition without amendment or interpretation of the patient’s response by a 
clinician or anyone else. A PRO can be measured by self-report or by interview provided that the 
interviewer records only the patient’s response.”18 
 
In this section we focus mainly on the use of standard instruments for measurement of PROs, in 
domains including specific disease areas, health related quality of life, and functioning. PROs 
have similarities to other outcome variables measured in observational studies.  They are 
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measured with components of both random and systematic error (bias).  To be most useful, it is 
important to have evidence about the reliability, validity, responsiveness, and interpretation of 
PRO measures, discussed further later in this section.  

Types	
  of	
  humanistic	
  outcome	
  measures	
  

Generic	
  
Generic PRO questionnaires are designed to be used across different subgroups of individuals, 
and contain common domains that are relevant to almost all populations.  They can be used to 
compare one population to another, or to compare scores in a specific population to normative 
scores.  Many have been used for years, and have well established and well understood 
measurement properties.   
 
Generic PRO questionnaires can focus on a comprehensive set of domains, or on a narrow range 
of domains, such as symptoms, or aspects of physical, mental, or social functioning.  An example 
of a generic PRO is the Sickness Impact Profile (SIP), one of the oldest and most rigorously 
developed questionnaires, which measures 12 domains that are affected by illness.20  The SIP 
produces two subscale scores for Physical and Mental health, and an overall score.  Another 
measure, the SF-36, measures 8 domains including general health perceptions, pain, physical 
functioning, role functioning (limited by physical health), social functioning, mental health, and 
vitality.21  The SF-36 produces a Physical Component Score and a Mental Component Score.22  
The EQ-5D is another generic measure of health-related quality of life, intended for self-
completion, that generates a single index score.  This scale defines health in terms of 5 
dimensions: mobility, self-care, usual activities, pain/discomfort and anxiety/depression.  Each 
dimension has 3 response categories corresponding to no problem/some problem/extreme 
problem.  Taken as a whole, the EQ-5D defines a total of 243 possible states to which 2 further 
states (dead and unconscious) were added.23  Another broadly used indicator of quality of life 
relates to the ability to work.  The Work Productivity Index (WPAI) was created as a patient-
reported quantitative assessment of the amount of absenteeism, presenteeism and daily activity 
impairment attributable to general health (WPAI:GH) or a specific health problem (WPAI:SHP) 
(see below), in an effort to develop a quantitative approach to measuring the ability to work.24 
 
Examples of generic measures that assess a more restricted set of domains include the SCL-90 to 
measure symptoms,25 the Index of Activities of Daily Living to measure independence in 
performing basic functioning,26 the Psychological General Well-Being Index to measure 
psychological well-being (PGWBI),27 and the Beck Depression Inventory.28  

Disease	
  or	
  population	
  specific	
  
Specific PRO questionnaires are sometimes referred to as “Disease-Specific.” While a 
questionnaire can be disease- or condition-specific (e.g., chronic heart failure), it can also be 
designed for use in a specific population (e.g., pediatric, geriatric), or for use to evaluate a 
specific treatment (e.g., renal dialysis).  Specific questionnaires may be more sensitive to 
symptoms that are experienced by a particular group of patients.  Thus, they are thought to detect 
differences and changes in scores when they occur in response to interventions. 
 
Some specific measures assess multiple domains that are affected by a condition.  For example, 
the Arthritis Impact Measurement Scales (AIMS) includes 9 subscales that assess problems 
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specific to the health-related quality of life of patients with rheumatoid arthritis and its 
treatments.29  The MOS-HIV Health Survey includes 10 domains that are salient for people with 
HIV and its treatments.30 
 
Some of these measures take a modular approach, including a core measure that is used for 
assessment of a broader set of conditions, accompanied by modules that are specific to disease 
subtypes.  For example, the FACIT and EORTC families of measures for evaluating cancer 
therapies each include a core module that is used for all cancer patients, and specific modules for 
each type of cancer, such as a module pertaining specifically to breast cancer.31,32,33 
 
Other measures focus more narrowly on a few domains most likely to be affected by a disease, or 
most likely to improve with treatment.  For example, the Headache Impact Test includes only six 
items.34  In contrast, other popular measures focus on symptoms that are affected by many 
diseases, such as the Brief Pain Inventory and the M. D. Anderson Symptom Inventory 
(MDASI), which measure the severity of pain and other symptoms, and the impact of symptoms 
on function, and have been developed, refined and validated in many languages and patient 
subgroups over three decades.35,36 
 
It is possible, though not always advisable, to design a new PRO instrument for use in a specific 
study.   The process of developing and testing a new PRO measure can be lengthy – generally 
requiring at least a year in time – and there is no guarantee that a new measure will work as well 
as more generic but better tested instruments.  Nonetheless, it may be necessary in the case of an 
uncommon condition for which there are no existing PRO measures, for a specific cultural 
context that differs from the ones that have been studied before, and/or to capture effects of new 
treatments that may require a different approach to measurement.  However, when possible, in 
these cases it is still prudent to include a PRO measure with evidence for reliability and validity, 
ideally in the target patient population, in case the newly designed instruments fail to work as 
intended.  This approach will allow comparisons with the new measure to assess content validity 
if there is some overlap of the concepts being measured. 

Item	
  Response	
  Theory	
  (IRT)	
  and	
  Computer	
  Adaptive	
  Testing	
  (CATS)	
  
Item Response Theory is a framework for the development of tests and measurement tools, and 
assessing how well the tools work.  CAT represents an area of innovation in measuring PROs.  
CAT allows items to be selected to be administered so that questions are relevant to the 
respondent and targeted to the specific level of the individual, with the last response determining 
the next question that is asked. Behind the scenes, items are selected from “item banks,” 
comprising collections of dozens to hundreds of questions that represent the universe of potential 
levels of the dimension of interest, along with an indication of the relative difficulty or 
dysfunction that they represent.  For example, the PROMIS item bank for physical functioning 
includes 124 items that range in difficulty from getting out of bed to running several miles.37  
This individualized administration can both enhance measurement precision and reduce 
respondent burden.38  Computer adaptive testing is based on IRT methods of scaling items and 
drawing subsets of items from a larger item bank.39  Considerations around adaptive testing 
involve balancing the benefit of tailoring the set of items and measurements to the specific 
individual with the risk of inappropriate targeting or classification if items answered incorrectly 
early on determine the later set of items to which a subject is able to respond.  PROMIS (Patient-
Reported Outcomes Measurement Information System)40 is a major NIH initiative that leverages 
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these desirable properties for PROs in clinical research and practice applications.  

Descriptive	
  vs.	
  Preference	
  format	
  	
  	
  
Descriptive questionnaires ask about general or common domains and complaints, and usually 
provide multiple scores.  Preference based measures, generally referred to as utility measures, 
provide a single score, usually on a 0-1 scale, that represents the aggregate of multiple domains 
for an overall estimate of burden.  
 
Most of the questionnaires familiar to clinical researchers fall into the category of descriptive 
measures, including all of those mentioned in the preceding paragraphs.  Patients or other 
respondents are asked to indicate the extent to which descriptions of specific feelings, abilities or 
behaviors apply to them.  Utility measures are discussed further in the following section. 

Other	
  attributes	
  of	
  PROs	
  
Within each of the above options, there are several attributes of PRO instruments to consider.  
These include response format (numeric scales vs. verbal descriptors or visual analogue scales), 
the focus of what is being assessed (frequency, severity, impairment, all of the above), and recall 
period.  Shorter, more recent recall periods more accurately capture the individual’s actual 
experience, but may not provide as good an estimate of their typical activities or experiences (not 
everyone vacuums or has a headache every day). 

Content validity   

Content validity is the extent to which a PRO instrument covers the breadth and depth of salient 
issues for the intended group of patients.   If a PRO instrument is not valid with respect to its 
content, then there is an increased chance that it may fail to capture adequately the impact of an 
intervention.  For example, in a study to compare the impact of different regimens for 
rheumatoid arthritis, a PRO that does not assess hand function could be judged to have poor 
content validity, and might fail to capture differences among therapies.   The FDA addresses 
content validity as being of primary interest in assessing a PRO, with other measurement 
properties being secondary and defines content validity as follows: “Evidence from qualitative 
research demonstrating that the instrument measures the concept of interest including evidence that 
the items and domains of an instrument are appropriate and comprehensive relative to its intended 
measurement concept, population, and use.  Testing other measurement properties will not replace or 
rectify problems with content validity.”18 
 
Content validity is generally assessed qualitatively rather than statistically.  It is important to 
understand and consider the population being studied, including their usual activities and 
problems, the condition (especially its impact on the patient’s functioning), and the interventions 
being evaluated (including both their positive and adverse effects). 

Responsiveness and minimally important difference 

Responsiveness is a measure of a PRO instrument’s sensitivity to changes in health status or 
other outcome being measured.  If a PRO is not sufficiently responsive, it may not provide 
adequate evidence of effectiveness in observational studies or clinical trials.  Related to 
responsiveness is the minimally important difference that a PRO measure may detect.  Both the 
patient’s and health care provider’s perspectives are needed to determine if the minimally 
difference detectable by an instrument is in fact of relevance to their overall health status.41 
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Floor and ceiling effects 
Poor content validity can also lead to a mismatch between the distribution of responses and the 
true distribution of the concept of interest in the population.  For example, if questions in a PRO 
to assess ability to perform physical activities are too “easy” relative to the level of ability in the 
population, then the PRO will not reflect the true distribution.  This problem can present as a 
“ceiling” effect, where a larger proportion of the sample reports no disability.   Similarly, “floor” 
effects are seen when questions regarding a level of ability are skewed too difficult for the 
population and the responses reflect this lack of variability. 

Interpretation	
  
Clinicians and clinical researchers may be unfamiliar with how to interpret PRO scores.  They 
may not understand or have reference to the usual distribution of scores of a particular PRO in a 
clinical or general population.  Without knowledge of normal ranges, physicians may not know 
what cut-points of scoring indicate that action is warranted.  Researchers will not know whether 
an observed difference between two groups is meaningful, and whether a given change within or 
between groups is important without reference values from a comparable population.  The task 
of understanding the meaning of scores is made more difficult by the fact that different PRO 
measurement tools tend to use different scoring systems.  For most questionnaires, higher scores 
imply better health, but for some, a higher score is worse.  Some scales are scored from 0-1, 
where 0 = dead, and 1=perfect health.  Others are scores on a 0-100 scale where 0 is simply the 
lowest attainable score (i.e., the respondent indicates the “worst” health state in response to all of 
the questions) and 100 is the highest.  Still others are “normalized” so that for example, a score 
of 50 represents the mean score for the healthy or nondiseased population, with a standard 
deviation of 10 points.  It is therefore crucial for researchers and users of PRO data to understand 
the scoring system being used for an instrument and the expected distribution, including the 
distributional properties. 
 
For some PRO instruments, particularly generic questionnaires that have been applied to large 
groups of patients over many years, there are population norms that have been collected and 
established.  These can be used as a reference point.  Scoring can also be recalculated and 
“normalized” to a “T-score” so that a specific score (often 50 or 100) corresponds to the mean 
score for the population, and a specific number of points (often 5 or 10) corresponds to 1 
standard deviation unit in that population. 

Selection	
  of	
  a	
  PRO	
  measure	
  
There are a number of practical considerations to take into account when selecting PRO 
measures for use in a CER study.  The measurement properties discussed in the preceding 
sections also require evaluation in all instances for the specific instrument selected, within a 
given population, setting and intended purpose. 

Population	
  
It is important to understand the target population that will be completing the PRO assessment.  
These may range from individuals who can self-report, to individuals requiring the assistance of 
a proxy or medical professional (children, mentally or cognitively limited, visually impaired).  
Some respondents may be ambulatory individuals living in the community, whereas others may 
be inpatients or institutionalized individuals. 
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If a PRO questionnaire is to be used in non-English speaking populations, or in multiple 
languages, it is necessary to have appropriate language/culturally adapted versions.  One should 
have evidence for the reliability and validity of the translated/culturally adapted version, as 
applied to the concerned population.  One should also have data showing the comparability of 
performance across different language and cultural groups.  This is of special importance when 
pooling data across language versions, as in a multinational clinical trial or registry study. 

Burden	
  
It is important to match the respondent burden created by a PRO to the requirements of the 
population being studied.  Patients with greater levels of illness or disability are less able to 
complete lengthy questionnaires.  In some cases, the content or specific questions posed in a 
PRO may be upsetting or otherwise unacceptable to respondents.  In other cases, a PRO may be 
too cognitively demanding, or written at a reading level that is above that for the intended 
population.  The total burden of study related data collection on patients and providers must also 
be considered, as an excessive number of forms that must be completed are likely to reduce 
compliance. 

Cost	
  and	
  copyright	
  	
  	
  
Another practical consideration is the copyright status of a PRO being considered for use.  Some 
PROs are entirely in the public domain and are free for use.  Others are copyrighted and require 
permission and/or the payment of fees for use.  Some scales require payment of fees for scoring, 
such as the SF-12 and SF-36. 

Mode	
  and	
  format	
  of	
  administration	
  
As noted above, there are various options for how a questionnaire should be administered, and 
how the data should be captured, each method having both advantages and disadvantages.  A 
PRO can be 1) self-administered at the time of a clinical encounter, 2) administered by an 
interviewer at the time of a clinical encounter, 3) administered with computer assistance at the 
time of a clinical encounter, 4) self-administered by mail, 5) self-administered on-line, 6) 
interviewer administered by phone, and 7) computer administered by phone. Self-administration 
at the time of a clinical encounter requires little technology or up-front cost, but requires staff for 
supervision and data entry and can be difficult for respondents with limited literacy or 
sophistication.  Face to face administration is engages respondents and reduces their burden, but 
requires trained interviewers.  Computer assisted provides and intermediate solution but also 
requires capital investment.  Mailed surveys afford more privacy to respondents, but generate 
expenses related to mailing, and do not eliminate problems with literacy.  Paper-based formats 
require data entry, scoring and archiving and is prone to calculation errors.   Online 
administration is relatively inexpensive, especially for large surveys, and surveys can be 
completed any time, but not all individuals have internet access.  Live telephone interview is 
engaging and allows interviewer flexibility, but is also expensive.  “Cold calls” to potential study 
participants may result in low response rates given the with rise of caller ID systems to screen 
calls, and skepticism about “telemarketing”. 
 
Interactive voice response systems (or IVRS) can also be used to conduct telephone interviews, 
but it can be tedious to respond using the phone key pad and this format strikes some as 
impersonal.   
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Static	
  versus	
  dynamic	
  questionnaires	
  	
  
Static forms are the type of questionnaire that employs a fixed format set of questions and 
response options.  They can be administered on paper, by interview, or through the internet.  
Dynamic questionnaires select followup questions to administer based on the responses already 
obtained for previous question, and since they are more efficient, more domains can be assessed. 

Economic	
  and	
  Utilization	
  Outcomes	
  
While clinical outcomes represent the provider professional perspective and humanistic 
outcomes represent the patient perspective, economic outcomes, including measures of health 
resource utilization represent the payer and societal perspective.  Measures of cost and cost-
effectiveness are often excluded from government-funded CER studies in the US.  However, 
these measures are important to a variety of important stakeholders such as payers and product 
manufacturers, and are routinely included in cost effectiveness research in countries such as 
Australia, the United Kingdom, Canada, France, and Germany.42   
 
Research questions addressing issues of cost-effectiveness and resource utilization may be 
formulated in a number of ways.  Cost identification studies measure the cost of applying a 
specified treatment to a population under a certain set of conditions.  These studies describe the 
cost incurred without comparison to alternative interventions.  Some cost identification studies 
describe the total costs of care for a particular population whereas others isolate costs of care 
related to the specific condition; this latter approach requires that each episode of care be 
ascribed as having been related or unrelated to the illness of interest and involves substantial 
review.43  Cost benefit studies are typically measured in dollars or other currency.  These studies 
compare the monetary costs of an intervention against the standard of care with the cost savings 
that result from the benefits of that treatment.  In these studies, mortality is also assigned a dollar 
value, although techniques for assigning value to a human life are controversial.  Cost 
effectiveness is a relative concept and its analysis compares the costs of treatments and benefits 
of treatments in terms of a specified outcome, such as reduced mortality or morbidity, such as 
years of life saved, or infections averted.   

Types	
  of	
  health	
  resource	
  utilization	
  and	
  cost	
  measures	
  

Monetary	
  costs	
  
Studies most often examine direct costs (the monetary costs of medical treatments themselves, 
potentially including associated costs of administering treatment or conditions associated with 
treatment) but may also include measures of indirect costs (the costs of disability or loss of 
livelihood, both actual and potential).  Multiple measures of costs are commonly included in any 
given study.   

Health	
  resource	
  utilization	
  
Measures of health resource utilization, such as number of inpatient or outpatient visits, total 
days of hospitalization in a given year, or number of days treated with IV antibiotics are often 
used as efficient and easily interpretable proxies for measuring cost, since actual costs are 
dependent on numerous factors (e.g., institutional overhead, volume discounts) and can be 
difficult to obtain since they often may be confidential since, in part, they reflect business 
acumen in price negotiation.  Costs may also vary by institution or location, such as the cost of a 
day in the hospital or a medical procedure.  Resource utilization measures may be preferred 
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when a study is intended to yield results that may be generalizable to other health systems or 
reimbursement systems than those under study, as they are not dependent on a particular 
reimbursement structure such as Medicare.  Alternatively, a specific cost or reimbursement 
structure, such as the amount reimbursed by the Center for Medicare and Medicaid Services 
(CMS) for specific treatment items or average wholesale drug costs, may be applied to units of 
health resource use when conducting studies that pool data from different health systems. 

Utility	
  and	
  preference-­‐based	
  measures	
  
PROs and cost analyses intersect around the calculation of cost-utility.  Utility measures are 
derived from economic and decision theory.  The term utility refers to the value placed by the 
individual on a particular health state.  Utility is summarized as a score ranging from 0.0 
representing death to 1.0 representing perfect health.  
 
In health economic analyses, utilities are used to justify devoting resources to a treatment.  There 
are several widely used preference based instruments that are used to estimate utility.   
 
Preference measures are based on the fundamental concept that individuals or groups have 
reliable preferences about different health states.  To evaluate those preferences, individuals rate 
a series of health states: for example, a person with specific levels of physical functioning (able 
to walk one block but not climb stairs), mental health (happy most of the time), and social role 
functioning (not able to work due to health).  The task for the individual is to directly assign a 
degree of preference to that state.  These include the Standard Gamble and Time Tradeoff 
methods,44,45 the EQ-5D, also referred to as the Euroqol,23 the Health Utilities Index,46,47 and the 
Quality of Well-being Scale.48  

Quality-­‐adjusted	
  life	
  years	
  (QALYs)	
  
Utility scores associated with treatment can be used to weight the duration of life according to its 
quality, and are then used to generate QALYs.  Utility scores are generally first ascertained 
directly in a sample of people with the condition in question, either cross-sectionally or over time 
with a clinical trial.   Utility values are sometimes estimated indirectly using other sources of 
information about the health status of people in a population.  The output produced by an 
intervention can be calculated as the area under the cost-utility curve. 
   
For example, if the mean utility score for patients receiving antiretroviral treatment for HIV 
disease is 0.80, then the outcome for a treated group would be survival time multiplied by 0.80. 

Disability-­‐adjusted	
  life	
  years	
  (DALYs)	
  	
  
DALYs are another measure of overall disease burden expressed as the number of years lost to 
poor health, disability, or premature death.49  As with QALYs, mortality and morbidity are 
combined in a single metric.  Potential years of life lost to premature death are supplemented 
with years of health life lost due to less than optimal health.  Whereas 1 QALY corresponds to 
one year of life in optimal health, 1 DALY corresponds to one year of healthy life lost.   
 
An important aspect of the calculation of DALYs is that the value assigned to each year of life 
depends on age.  Years lived as a young adult are valued more highly than those spent as a young 
child or older adult, reflecting the capacity for work productivity during different phases of life.  
DALYs are therefore estimated for different chronic illnesses by first calculating the age and sex 
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adjusted incidence of disease.  A DALY is calculated as the sum of the average years of life lost, 
and the average years lived with a disability.  For example, to estimate the years of healthy life 
lost in a region due to HIV/AIDS, one would first estimate the prevalence of the disease by age.  
The DALY value is calculated by summing the average of years of life lost and the average 
number of years lived with AIDS, discounted based on a universal set of standard weights based 
on expert valuations.  

Selection	
  of	
  resource	
  utilization	
  and	
  cost	
  measures	
  
The selection of measures of resource utilization or costs should correspond to the primary 
hypothesis in terms of the impact of intervention.  For example, will treatment reduce the need 
for hospitalization or result in a shorter length of stay?  Or, will treatment or intervention reduce 
complications that require hospitalization?  Or, will a screening method reduce the total number 
of diagnostic procedures required per diagnosis? 
 
It is useful to consider what types of costs are of interest to the investigators and to various 
stakeholders.  Are total costs of interest, or costs associated with specific resources (e.g., 
prescription drug costs)?  Are only direct costs being measured, or are you also interested in 
indirect costs such as those related to days lost from work? 
 
When it is determined to present results in terms of dollars rather than units of resources, several 
different methods can be applied.  In the unusual case that an institution has a cost-accounting 
system, cost can be measured directly.  In most cases, resource units are collected, and assigned 
costs based on local or national average prices for the specific resources being considered, e.g., 
reimbursement from CMS for a CT scan, or a hospital day.  Application of an external standard 
cost system reduces variability in costs due to region, payer source, and other variables that 
might obscure the impact of the intervention in question. 

Study	
  Design	
  and	
  Analysis	
  Considerations	
  

Study	
  period	
  and	
  length	
  of	
  followup	
  
In designing a study, the required study period and length of followup are determined by the 
expected timeframe within which an intervention may be expected to impact the outcome of 
interest.  A study comparing traditional with minimally invasive knee replacement surgery will 
need to follow subjects at least for the duration of the expected recovery time of three to six 
months or longer.  The optimal duration of a study can be problematic when studying effects that 
may manifest over a long time period, such as treatments to delay onset or prevent chronic 
disease. In these cases, data sources with a high degree of turnover in patients, such as 
administrative claims data bases from managed care organizations, may not be suitable.  For 
example, in the case of Alzheimer’s disease, a record of health care is likely to be present in 
health insurance claims.  However, with the decline in cognitive function, patients may lose 
ability to work and enter assisted care facilities, where utilization is not typically captured in 
large health insurance claims systems. Some studies may be undertaken for the purpose of 
determining how long an intervention can be expected to impact the outcome of interest.  For 
example, various measures are used to aid in reducing obesity and smoking cessation, and 
patients, health care providers, and payers are interested in knowing how long these interventions 
work (if at all), for whom, and in what situations. 
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Notwithstanding the limitations of intermediate endpoints (discussed in a preceding section), one 
of the main advantages of their use is the potential truncation of the required study followup 
period.  Consider, for example, a study of the efficacy of the human papilloma virus vaccine, for 
which the major medical endpoint of interest is prevention of cervical cancer.  The long latency 
period (more than two years, depending on the study population) and relative infrequency of 
cervical cancer raise the possibility that intermediate endpoints should be used. Candidates might 
include new diagnoses of genital warts, or new diagnoses of the precancerous conditions cervical 
intraepithelial neoplasia (CIN) or vaginal intraepithelial neoplasia (VIN), which have shorter 
latency periods of less than one year or two years (minimum) respectively. Use of these 
endpoints would allow such a study to provide meaningful evidence informing the use of the 
HPV vaccine in a shorter timeframe, during which more patients might benefit from its use.  
Alternatively, if the vaccine is shown to be ineffective, this could avoid years of unnecessary 
treatment and the associated costs as well as the costs of running a longer trial. 

Avoidance	
  of	
  bias	
  in	
  study	
  design	
  

Misclassification	
  
The role of the researcher is to understand the extent and sources of misclassification in outcome 
measurement, and to try to reduce these as much as possible.  To ensure comparability between 
treatment groups with as little misclassification (also referred to as measurement error) of 
outcomes as possible, a clear and objective (verifiable and not subject to individual interpretation 
insofar as possible) definition of the outcome of interest is needed.  An unclear outcome 
definition can lead to misclassification and bias in the measure of treatment effectiveness.  When 
the misclassification is nondifferential, or equivalent across treatment groups, the estimate of 
treatment effectiveness will be biased toward the null, reducing the apparent effectiveness of 
treatment, which may result in an erroneous conclusion that no effect (or one smaller than the 
true effect size) exists.  When the misclassification differs systematically between treatment 
groups, it may distort the estimate of treatment effectiveness in either direction. 
 
For clinical outcomes, incorporation of an objective measure such as a validated tool that has 
been developed for use in clinical practice settings, or an adjudication panel for review of 
outcomes with regard to whether they meet the pre-determined definition of an event, would 
both be approaches that increase the likelihood that outcomes will be measured and classified 
accurately and in a manner unlikely to vary according to who is doing the assessment.  For 
PROs, measurement error can stem from several sources, including the way in which a question 
is worded and hence understood by a respondent, how the question is presented, the population 
being assessed, the literacy level of respondents, the language in which the questions are written, 
and elements of culture that it represents.   
 
To avoid differential misclassification of outcomes, care must also be taken to use the same 
methods of ascertainment and definitions of study outcomes whenever possible.  For prospective 
or retrospective studies with contemporaneous comparators, this is usually not an issue since it is 
most straightforward to utilize the same data sources and methods of outcome ascertainment for 
each comparison group.  A threat to validity may arise in use of a historical comparison group, 
which may be used in certain circumstances.  For example, this occurs when a new treatment 
largely displaces use of an older treatment within a given indication, but further evidence is 
needed for the comparative effectiveness of the newer and older treatments, such as enzyme 
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replacement for lysosomal storage disorders.  In such instances, use of the same or similar data 
sources, and equivalent outcome definitions to the extent possible will reduce the likelihood of 
bias due to differential outcome ascertainment.   
 
Other situations that may give rise to issues of differential misclassification of outcomes include: 
when investigators are not blinded to the hypothesis of the study, and “rule-out” diagnoses are 
more common in those with a particular exposure of interest; when screening or detection of 
outcomes is more common or more aggressive in those with one treatment than another (i.e., 
surveillance bias, e.g., when liver function testing are preferentially performed in patients using a 
new drug compared to other treatments for that condition); and when loss to followup occurs that 
is related to the risk of experiencing the outcome.  For example, once a safety signal has been 
identified and publicized, physicians have been alerted and then look more proactively for 
clinical signs and symptoms in treated patients.  This situation is even greater for products that 
are subject to controlled distribution or Risk Evaluation and Mitigation Strategies (REMS).  
Consider clozapine, an antischizophrenia drug that is subject to controlled distribution through a 
“no blood, no drug” monitoring program.  The blood testing program was implemented to detect 
early development of agranulocytemia.  When comparing patients treated with clozapine to other 
antischizophrenics, those using clozapine may appear to have a worse safety profile with respect 
to this outcome. 

Validation	
  and	
  adjudication	
  
In some instances, additional information must be collected (usually from medical records) to 
validate the occurrence of the outcome of interest, including to exclude erroneous or “rule-out” 
diagnoses.  This is particularly important for medical events identified in administrative claims 
databases, for which a diagnosis code associated with a medical encounter may represent a “rule 
out” diagnosis or a condition that does not map to a specific diagnosis code.  For some complex 
diagnoses, such as unstable angina, a standard clinical definition must be applied by an 
adjudication panel that has access to detailed records inclusive of subjects’ relevant medical 
history, symptomatic presentation, diagnostic work-up, and treatment.  Methods of validation 
and adjudication of outcomes strengthen the internal validity and therefore the evidence that can 
be drawn from a CER study. However, they are resource intensive. 

Issues	
  specific	
  to	
  PROs	
  
PROs are prone to several specific sources of bias.  Self-reports of health status are likely to 
differ systematically from reports by surrogates, who, for example, are likely to report less pain 
than the individuals themselves.50  Some biases may be population dependent.  For example, 
there may be a greater tendency of some populations to succumb to acquiescence bias (agreeing 
with the statements in a questionnaire) or social desirability bias (answering in a way that would 
cast the respondent in the best light).51  In some situations, however, PRO may be the most 
useful marker of disease activity, such as with episodic conditions that cause short duration 
disease flares such as low back pain and gout, where patients may not present for health care 
immediately, if at all.   
 
The goal of the researcher is to understand and reduce sources of bias, considering those most 
likely to apply in the specific population and topics under study.  In the case of well-understood 
systematic biases, adjustments can be made so that distributions of responses are more 
consistent.  In other cases, redesigning items and scales, for example, including both positively 
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and negatively worded items, can reduce specific kinds of bias. 
 
Missing data, an issue covered in more detail in chapter 10, pose a particular problem with 
PROs, since PRO data are usually not missing at random.  Instead, respondents whose health is 
poorer are more likely to fail to complete an assessment.  Another special case of missing data 
occurs when a patient dies and is unable to complete an assessment.  If this issue is not taken into 
account in the data analysis, and scores are only recorded for living patients, incorrect 
conclusions may be drawn.  Strategies for handling this type of missing data include selection of 
an instrument that incorporates a score for death, such as the Sickness Impact Profile, 20,52 or the 
Quality of Well Being Scale,48 or through an analytic strategy that allows for some missing 
values.   
 
Failure to account for missing PRO data that are related to poor health or death will lead to an 
overestimate of the health of the population based on responses from subjects who do complete 
PRO forms.  Therefore in research using PROs, it is very important to understand the extent and 
pattern of missing data, both at the level of the individual as well as for specific items or scales 
on an instrument.    
 
A strategy should be put in place to handle missing data when developing the study protocol and 
analysis plans.  Such strategies that pertain to use of PROs in research are discussed in further 
detail in publications such as the book by Fairclough and colleagues.53 

Analytic	
  considerations	
  

Form	
  of	
  outcome	
  measure	
  and	
  analysis	
  approach	
  
To a large extent, the form of the primary outcome of interest, that is, whether the outcome is 
measured and expressed as a dichotomous or polytomous categorical variable, a continuous 
variable, and whether it is to be measured at a single time point, repeated measures at fixed 
intervals, or repeated measures at varying time intervals, determines the appropriate statistical 
methods that may be applied in analysis.  These topics are covered in detail in chapter 10.   

Sensitivity	
  analysis	
  
One of the key factors to address in planned sensitivity analyses for an observational CER study 
is how varying definitions of the study outcome or related outcomes will affect the measures of 
association from the study.  These include assessing multiple related outcomes within a disease 
area, for example, multiple measures of respiratory function such as FEV1, FEV1 percent 
predicted, and FVC in studies of asthma treatment effectiveness in children, assessing the effect 
of different cutoffs for dichotomized continuous outcome measures such as use of Systemic 
Lupus Erythematosus Disease Activity Index-2000 scores to define active disease in lupus 
treatment studies,54 or different sets of diagnosis codes to capture a condition in administrative 
data, such as influenza and related respiratory conditions.  These and other considerations for 
sensitivity analyses are covered in detail in chapter 11. 

Conclusion	
  

Future	
  Directions	
  
Increased use of EHRs as a source of data for observational research including registries, other 
types of observational studies, and specifically for CER has prompted initiatives to develop 
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standardized definitions of key outcomes and other data elements that would be used across 
health systems and different EHR platforms to facilitate comparisons between studies and 
pooling of data.  The National Cardiovascular Research Infrastructure partnership between the 
American College of Cardiology and Duke Clinical Research Institute that received ARRA 
funding to establish intra-operable data standards based on the National Cardiovascular Data 
Registry is an example of such a current activity.55  

Summary	
  
This chapter provides an overview of considerations in development of outcome definitions for 
observational CER studies, describes implications of the nature of the proposed outcomes for the 
study design, and enumerates issues of bias that may arise in incorporating the ascertainment of 
outcomes in observational research and means of preventing or reducing these biases. 
 
Development of clear and objective outcome definitions that correspond to the nature of the 
hypothesized treatment effect and address the research questions of interest, along with 
validation of outcomes where warranted or use of standardized PRO instruments validated for 
the population of interest, contribute to the internal validity of observational CER studies.  
Attention to collection of outcome data in an equivalent manner across treatment comparison 
groups is also required.  Use of appropriate analytic methods suitable to the outcome measure 
and sensitivity analysis to address varying definitions of at least the primary study outcomes are 
needed to make inferences drawn from such studies more robust and reliable. 
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Outcome	
  Selection	
  and	
  Measurement	
  for	
  Observational	
  CER	
  
Protocols	
  and	
  Proposals	
  
 

Guidance Key Considerations Check 
Propose primary and secondary 
outcomes that directly correspond 
to research questions 

-­‐ Followup period should be sufficient to observe hypothesized effects 
of treatment on primary and secondary outcomes 

 
 

Provide clear and objective 
definitions of clinical outcomes 

-­‐ Should reflect hypothesized mechanism of effect of treatment, if 
known 

-­‐ Should provide justification that outcome is reliably ascertained 
without additional validation, when applicable and feasible, or 
propose validation and/or adjudication of endpoints. 

-­‐ If an intermediate (surrogate) endpoint is proposed, justification 
should be provided why main disease outcome of interest is not being 
used and that intermediate endpoint reflects expected pathway of 
effect of treatment on main outcome of interest 

 

Provide clear and relevant 
definitions of cost or health 
resource utilization outcomes 

-­‐ Should reflect hypothesized effect of treatment on specific 
components of medical cost and/or resource utilization, if known 

-­‐ Should be able to be measured directly or via proxy from data sources 
proposed for study 

-­‐ For costs, should consider proposing standard benchmark costs to be 
applied to units of resource utilization especially when multiple health 
systems, payment systems, and/or geographic regions are included in 
study population or data source 

 

Describe plan for use of validated, 
standard instrument for 
measurement of patient-reported-
outcomes 

-­‐ Should reflect hypothesized effect of treatment on specific aspects of 
disease symptoms or treatment, or quality of life, if known 

-­‐ Should propose use of a standard instrument that has been validated 
for use in population representative of the study population, when 
possible 

-­‐ Should be validated for use in translation to other specific languages if 
intended to be used in those languages for study, when possible 

-­‐ Should be validated for the intended mode of administration, when 
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Guidance Key Considerations Check 
possible 

Address issues of bias expected to 
arise and proposed means of bias 
minimization 

-­‐ Describe potential issues of bias, misclassification, and missing data 
that may be expected to occur with the proposed outcomes, including 
those specific to PRO data 

-­‐ Provide plan for minimization of potential bias, misclassification, and 
missing data issues identified 

 

Analysis -­‐ Proposed analytic methods should correspond to nature of outcome 
measure (e.g., continuous, categorical [dichotomous, polychotomous, 
ordinal], repeated measures, time-to-event) 

-­‐ Sensitivity analyses relating to expected questions that arise around 
the study outcomes 

-­‐ Sensitivity analyses should be proposed that address different 
relevant definitions of the study outcome(s) or multiple related 
outcomes (e.g., different measures of subclinical and clinical 
cardiovascular disease) 
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Chapter	
  7.	
  Covariate	
  Selection	
  	
  

Abstract	
  
This chapter addresses strategies for selecting variables for adjustment in nonexperimental 
comparative effectiveness research (CER), and uses causal graphs to illustrate the causal network 
relating treatment to outcome.  While selection approaches should be based on an understanding 
of the causal network representing the common cause pathways between treatment and outcome, 
the true causal network is rarely known.  Therefore, more practical variable selection approaches 
based on background knowledge when the causal structure is only partially known are described.   
These approaches include adjustment for all observed pretreatment variables thought to have 
some connection to the outcome, all known risk factors for the outcome, and all direct causes of 
the treatment or the outcome.  Empirical approaches, such as forward and backward selection 
and automatic high-dimensional proxy adjustment are also discussed.  As there is a continuum 
between knowing and not knowing the causal, structural relations of variables, a practical 
approach to variable selection involving a combination of background knowledge and empirical 
selection using the high-dimensional approach is recommended.  The empirical approach could 
be used to select from a set of a priori variables based on the researcher’s knowledge and will 
ultimately select those to be included in the analysis.  This more limited use of empirically-
derived variables may reduce confounding while simultaneously reducing the risk of including 
variables that could increase bias.  

Introduction	
  
Nonexperimental studies that compare the effectiveness of treatments are often strongly affected 
by confounding.  Confounding occurs when patients with a higher risk of experiencing the 
outcome are more likely to receive one treatment over another.  For example, consider two drugs 
used to treat hypertension – calcium channel blockers (CCB) and diuretics.  Since CCBs are 
perceived by many clinicians as being particularly useful in treating high-risk patients with 
hypertension, patients with a higher risk for experiencing cardiovascular events are more likely 
to be channeled into the CCB group, thus confounding the relation between antihypertensive 
treatment and the clinical outcomes of cardiovascular events.1  The difference in treatment 
groups is a result of the differing baseline risk for the outcome and the treatment effects (if any).  
Any attempt to compare the causal effects of CCBs and diuretics on cardiovascular events would 
require taking patients’ underlying risk for cardiovascular events into account through some form 
of covariate adjustment.  The use of statistical methods to make the two treatment groups similar 
with respect to measured confounders is sometimes called statistical adjustment, control, or 
conditioning.  
 
The purpose of this chapter is to address the complex issue of selecting variables for adjustment 
in order to compare the causative effects of treatments.  The reader should note that the 
recommended variable selection strategies discussed are for nonexperimental causal models and 
not prediction or classification models, for which approaches may differ.  Recommendations for 
variable selection in this chapter focus primarily on fixed treatment comparisons when 
employing the so-called “incident user design”, which is detailed in chapter 2. 
 
This chapter contains three sections.  In Section 1, we explain causal graphs and the structural 
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relations of variables.  In Section 2, we discuss proxy, mismeasured, and unmeasured variables.  
Section 3 presents variable selection approaches based on full and partial knowledge of the data 
generating process as represented in causal graphs.  We also discuss approaches to selecting 
covariates from a high-dimensional set of variables based on statistical association, and how 
these approaches may be used to complement variable selection based on background 
knowledge.  Ideally, when information is available, causal graph theory would be used to 
complement any variable selection technique.  We provide a separate supplement (Supplement 
2) on Directed Acyclic Graphs for the more advanced reader.  

Causal	
  Models	
  and	
  the	
  Structural	
  Relationship	
  of	
  Variables	
  
This section introduces notation to illustrate basic concepts.  Causal graphs are used to represent 
relationships among variables and to illustrate situations that generate bias and confounding. 

Treatment	
  Effects	
  
The goal of comparative effectiveness research (CER) is to determine if a treatment is more 
effective or safer than another.  Treatments should be “well-defined”, as described in chapter 4, 
and represent manipulable units, e.g., drug treatments, guidelines, and devices.  Causal graphs 
are often used to illustrate relationships among variables that lead to confounding and other types 
of bias.  The simple causal graph in Figure 7.1 indicates a randomized trial in which no 
unmeasured or measured variables influence treatment assignment where A0 is the assigned 
treatment at baseline (time 0) and Y1 is the outcome after followup (time 1).  The arrow 
connecting treatment assignment (A0) to the outcome (Y1) indicates that treatment has a causal 
effect on the outcome.  Causal graphs are used to represent the investigator’s beliefs about the 
mechanisms that generated the data.  Knowledge of the causal structure that generates the data 
allows the investigator to better interpret statistical associations observed in the data.  

 
 

Risk	
  Factors	
  
We now let C0 be one or more baseline covariates measured at time 0.  Covariates that are 
predictive of the outcome but having no influence on treatment status are often referred to as 
pure risk factors, depicted in Figure 7.2.  Conditioning on such risk factors is unnecessary to 
remove bias but can result in efficiency gains in estimation2,3 and does not induce bias in 
regression or propensity score models.4  Researchers need to be careful not to include variables 
affected by the outcome, as adjustment for such variables can increase bias.2  We recommend 
including risk factors in statistical models to increase the efficiency/precision of an estimated 
treatment effect without increasing bias.4  
 

 

Figure 7.2. Causal graph illustrating a 
baseline risk factor (C0) for the outcome (Y1). 

Figure 7.1. Causal graph illustrating a 
randomized trial where assigned treatment 
(A0) has a causal effect on the outcome (Y1). 
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Confounding	
  
The central threat to the validity of nonexperimental CER is confounding.  Due to the ways in 
which providers and patients choose treatments, the treatment groups may not have similar 
underlying risk for the outcome.  Confounding is often illustrated as a common cause pathway 
between the treatment and outcome.  Measured variables that influence treatment assignment, are 
predictive of the outcome, and remove confounding when adjusted for, are often called 
confounders.  Unmeasured variables on a common cause pathway between treatment and 
outcome are referred to as unmeasured confounders.   For example, in Figure 7.3 unmeasured 
variables U1 and U2 are causes of treatment assignment and outcome.  In general, sources of 
confounding in observational comparative effectiveness studies include provider actions, patient 
actions, and social and environmental factors.  Unmeasured variable U1 has a measured 
confounder C0 that is a proxy for U1, such that conditioning on C0 removes confounding by U1, 
while the unmeasured variable U2 does not.  

 
 
 
 
 

Provider	
  Actions	
  
Confounding by indication: Confounding by indication, also referred to as “channeling bias,” is 
common and often difficult to control in comparative effectiveness studies.5-9  Prescribers choose 
treatments for patients who they believe are most likely to benefit or least likely to be harmed.  
In a now historic example, Huse et al. surveyed United States physicians about their use of 
various classes of antihypertensive medications and found that physicians were more likely to 
prescribe CCBs to high-risk patients than for uncomplicated hypertension.1  Any attempt to 
compare the safety or effectiveness between CCBs and other classes of antihypertensive 
medication would need to adequately account for the selective use of CCBs for higher risk 
patients.  If underlying disease severity and prognosis are not precisely measured and correctly 
modeled, CCBs would appear more harmful or less effective simply because higher risk patients 
are more likely to receive CCBs.  Variables measuring risk for the outcome being investigated 
need to be adequately measured and modeled to address confounding by indication. 
 
Selective treatment and treatment discontinuation of preventive therapy in frail and very sick 
patients: Patients who are perceived by a physician to be close to death or who face serious 
medical problems may be less likely to receive preventative therapies.  Similarly, preventative 
treatment may be discontinued when health deteriorates.  This may explain the substantially 
decreased mortality observed among elderly users of statins and other preventive medications 
compared with apparently similar nonusers.10,11  Even though concerns with discontinuation of 
therapy may be addressed using time-varying measures of treatment, this type of selective 

Figure 7.3. A causal graph illustrating 
confounding from the unmeasured variable 
U2. Conditioning on the measured variable 
(C0), as indicated by the box around the 
variable, removes confounding from U1. 
Measured confounders are often proxies for 
unmeasurable constructs. For example, 
family history of heart disease is a measured 
variable indicating someone’s risk for 
cardiovascular disease (U1). 
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discontinuation presents problems when analyzing fixed treatments.  For example, when 
conducting database studies, data are extracted and analyzed based on the specified study period.  
The frailer elderly who discontinued treatment prior to the study window would appear to have 
never received treatment. 
 
Patients with certain chronic diseases or patients who take many medications may also have a 
lower probability of being prescribed a potentially beneficial medication due to concerns 
regarding drug-drug interactions or metabolic problems.8  For example, patients with end-stage 
renal disease are less likely to receive medications for secondary prevention after myocardial 
infarction.12  Additionally, in a study assessing the potential for bias in observational studies 
evaluating use of lipid-lowering agents and mortality risk, the authors found evidence of bias due 
to an association between noncardiovascular comorbidities and the likelihood of treatment.11  
Due to these findings, researchers have recommended statin use and other chronic therapies as 
markers for health status in their causal models.11,13 

Patient	
  Actions	
  
Healthy User/Adherer Bias: Patients who initiate a preventive therapy may be more likely than 
other patients to engage in other healthy, prevention-oriented behaviors.  Patients who start a 
preventive medication may have a disposition that makes them more likely to seek out 
preventive health care services, exercise regularly, moderate their alcohol consumption, and 
avoid unsafe and unhealthy activities.14  Incomplete adjustment for such behaviors representative 
of specific personality traits can make preventative medications spuriously or more strongly 
associated with reduced risk of a wide range of adverse health outcomes.   
 
Similar to patients who initiate preventive medications, patients who adhere to treatment may 
also engage in more healthy behaviors.14,15  Strong evidence of this “healthy adherer” effect 
comes from a meta-analysis of randomized controlled trials where good adherence to placebo 
was found to be associated with mortality benefits and other positive health outcomes.16  The 
benefit can be explained by healthy behaviors of the patients who use the medication as 
prescribed rather than placebo effects. Treatment adherence is an intermediate variable between 
treatment assignment and health outcomes.  Any attempt to evaluate the effectiveness of 
treatment rather than the effect of assigned treatment would require time-varying treatment 
analysis where subjects are censored when treatment is discontinued.  Proper adjustment for 
predictors of treatment discontinuation is required to resolve the selection bias that occurs when 
conditioning on patients who adhered to assigned treatment.17,18 
 
Physician assessment that patients are functionally impaired (defined as having difficulty 
performing activities of daily living) may also influence their treatment assignment and health 
outcomes.  Functionally impaired patients may be less able to visit a physician or pharmacy; 
therefore such patients may be less likely to collect prescriptions and receive preventive health 
care services.8  This phenomenon could exaggerate the benefit of prescription medications, 
vaccines, and screening tests.8  

Environmental	
  and	
  Social	
  Factors	
  
Access to health care: Within large populations analyzed in multiuse health care databases, 
patients may vary substantially in their ability to access health care.  Patients living in rural areas, 
for example, may have to drive long distances to receive specialized care.8  Other patients face 
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different obstacles to accessing health care such as cultural factors (e.g., trust in medical system), 
economic factors (e.g., ability to pay), and institutional factors (e.g., prior authorization 
programs, restrictive formularies), all of which may have some direct or indirect relation to 
treatment and study outcomes.8  

Intermediate	
  Variables	
  
An intermediate variable is generally thought of as a post-treatment variable influenced by 
treatment that may or may not lie on the causal pathway between the treatment and the outcome.  
Figures 7.4 and 7.5 illustrate variables affected by treatment.  In Figure 7.4, C0 is a baseline 
confounder and must be adjusted for but a subsequent measurement of the variable at a later time 
(C1) is on the causal pathway between treatment and outcome.  For example, consider the study 
previously described comparing classes of antihypertensive medications (A0) on the risk for 
cardiovascular events (Y1).  The baseline measure of blood pressure is represented by C0.  Blood 
pressure measured after treatment is initiated with adequate time to reach therapeutic 
effectiveness and before the outcome assessment is considered an intermediate variable and 
represented by C1 in Figure 7.4.  When the goal of CER is to estimate the total causal effect of 
the treatment on the outcome, adjustment for variables on the causal pathway between treatment 
and outcome, such as blood pressure after treatment is initiated (C1), is unnecessary and likely to 
induce bias2 toward a relative risk of 1.0, though the direction can sometimes be in the opposite 
direction.  The magnitude of bias is greatest if the primary mechanism of action is through the 
intermediate pathway.  Thus, it would be incorrect to adjust for blood pressure measured after 
the treatment was initiated (C1), because most of the medication’s effects on cardiovascular 
disease are mediated through improvements in blood pressure.  This kind of over-adjustment 
would mask the antihypertensive effect of the treatment A0.   
 
Pharmacoepidemiological studies that do not restrict analyses to incident episodes of treatments 
are subject to this type of over-adjustment.  Measurement of clinical covariates, such as blood 
pressure, at the time of registry enrollment is an example of an established medication user 
where baseline measurement is unobtainable.  The clinical variables for established users at the 
time of enrollment have already been influenced by investigational treatments and are considered 
intermediate variables rather than baseline confounders.  The ability to adequately adjust for 
baseline confounders and not intermediate variables is one reason the new user design described 
in chapter 2 is so highly valued. 
 

 
   
 
 
 
Investigators are sometimes interested in separating total causal effects into direct and indirect 
effects.  In mediation analysis, the investigator intentionally measures and adjusts intermediate 

Figure 7.4. A causal graph representing 
an intermediate causal pathway. Blood 
pressure after treatment initiation (C1) is 
on the causal pathway between 
antihypertensive treatment (A0) and 
cardiovascular events (Y1). Baseline 
blood pressure (C0) is a measured 
confounder of disease severity (U1) and 
the box around the variable represents 
adjustment. 
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variables to estimate direct and indirect effects.  Mediation analysis requires a stronger set of 
identifiability assumptions and is discussed in the following references.19-33  
 
When conditioning on an intermediate, biases can also arise for “direct effects” if the 
intermediate is a common effect of the exposure and an unmeasured variable that influences the 
outcome as in Figure 7.5.  The “birth-weight paradox” is one of the better-known clinical 
examples of this phenomenon.27,32,34  Maternal smoking seems to have a protective effect on 
infant mortality in infants with the lowest birth-weight.  The seemingly protective effect of 
maternal smoking is a predictable association produced from conditioning on an intermediate 
without adequate control for confounding between the low birth-weight (intermediate) and infant 
mortality (outcome).  This is illustrated in Figure 7.5.  The problem of conditioning on a 
common effect of two variables will be further discussed below in the section on colliders. 

 
 
 
 

Time-­‐varying	
  Confounding	
  
The intention-to-treat analogue of a randomized trial, where subjects are assigned to the 
treatment they are first exposed to regardless of discontinuation or switching treatments, may not 
be the optimal design for all nonexperimental CER.  Researchers interested in comparing adverse 
effects of medications that are thought to only occur in proximity to using the medication may, 
for example, want to censor subjects who discontinue treatment.  This type of design is described 
as a ‘per protocol’ analysis.  An ‘as treated’ analysis allows subjects to switch treatment groups 
based on their use of treatment.  Both the ‘as treated’ and ‘per protocol’ analysis can be used to 
evaluate time-varying treatment.  
 
In a nonexperimental setting, time-vary treatments are expected to have time-varying 
confounders.  For example, if we were interested in comparing cardiovascular events between 
subjects who were completely adherent to CCBs versus completely adherent to diuretics, then we 
may consider a time-varying treatment design where subjects are censored when they 
discontinue the treatment they were first assigned.  If joint predictors of compliance and the 
outcome are present, then some sort of adjustment for the time-varying predictors must be made.  
Standard adjustment methods may not produce unbiased effects when the predictors of 
adherence and the outcome are affected by prior adherence, and a newer class of causal effect 
estimators, such as inverse-probability of treatment weights or g-estimation, may be 
warranted.18,35  
 

Figure 7.5. A causal diagram illustrating the 
problem of adjustment for the intermediate 
variable, low birth-weight (M1), when 
evaluating the causal effect of maternal 
smoking (A0) on infant mortality (Y1) after 
adjustment for measured baseline 
confounders (C0) between exposure and 
outcome. Confounding at the intermediate 
and outcome, birth defects (U1), remains 
unmeasured. 
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Collider	
  Variables	
  
Colliders are the result of two independent causes having a common effect.  When we include a 
common effect of two independent causes in our statistical model, the previously independent 
causes become associated thus opening a backdoor path between the treatment and outcome.  
This phenomenon can be explained intuitively if we think of two causes (sprinklers being on or it 
is raining) of a lawn being wet.  If we know the lawn is wet and we know the value of one of the 
other variables (it is not raining) then we can predict the value of the other variable (the sprinkler 
must be on).  Therefore, conditioning on a common effect induces an association between two 
previously independent causes, i.e., sprinklers being on and rain.  
 
Bias resulting from conditioning on a collider when attempting to remove confounding by 
covariate adjustment is referred to as M-collider bias.36  Pure pretreatment M-type structures that 
statistically behave like confounders may be rare; nevertheless, any time we condition on a 
variable that is not a direct cause of either the treatment or outcome but merely associated with 
the two, we have the potential to introduce M-bias.37  
 
A hypothetical example of how two independent variables can become conditionally associated 
and increase bias follows.  Consider a highly simplified hypothetical study to compare rates of 
acute liver failure between new users of CCB and diuretics using administrative data from a 
distributed network of managed care organizations.  As illustrated in Figure 7.7, if some of the 
managed care organizations had a formulary policy (U1) that caused a lower proportion of 
patients to be initiated on a CCB (A0), and that same policy reduced the chance of receiving 
medical treatment for erectile dysfunction (F0) and patients with a long history of unmeasured 
alcohol abuse (U2) are more likely to receive treatment for erectile dysfunction (F0), then 
adjustment for erectile dysfunction treatment may introduce bias by generating an association 
and opening a backdoor path that did not previously exist between formulary policy (U1) and 
alcohol abuse (U2).  
 
 

 

Figure 7.6. A simplified causal graph 
illustrating adherence to initial 
antihypertensive therapy as a time-
varying treatment (A0, A1), joint 
predictors of treatment adherence and 
the outcome (C0, C1). The 
unmeasured variable (U1) indicates 
this is a nonexperimental study. 

Figure 7.7. Hypothetical causal diagram illustrating 
M-type collider stratification bias. Formulary policy 
(U1) influences treatment with CCB (A0) and 
treatment for erectile dysfunction (F0).  Unmeasured 
alcohol use (U2) influences impotence and erectile 
dysfunction treatment (F0) and acute liver disease 
(Y1). In this example there is no effect of 
antihypertensive treatment on liver disease, but 
antihypertensive treatment and liver disease would be 
associated when adjusting for medical treatment of 
erectile dysfunction. The box around F0, represents 
adjustment and the conditional relationship is 
represented by the dotted arrow connecting U1 and 
U2. 
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Although conditioning on a common effect of two variables can induce an association between 
two otherwise independent variables, we currently lack many compelling examples of pure M-
bias for pretreatment covariates.  Such structures do, however, arise more commonly in the 
analysis of social network data.38  Compelling examples of collider stratification bias (i.e., 
selection bias) do exist when conditioning on variables affected by treatment (as illustrated in 
Figure 7.5).  Collider stratification bias can give rise to other biases in case-control studies and 
studies with time-varying treatments and confounding.39  

Instrumental	
  Variables	
  
An instrumental variable is a pretreatment variable that is a cause of treatment but has no causal 
association with the outcome other than through its effect on treatment such as Z0 in Figure 7.8.  
When treatment has an effect on the outcome, an instrumental variable will be associated with 
treatment and the outcome, and can thus statistically appear to be a confounder.  An instrumental 
variable will also be associated with the outcome even when conditioning on the treatment 
variable whenever there is an unmeasured common cause of the treatment on the outcome.  It has 
been established that inclusion of variables strongly associated with treatment (A0) but not 
independently associated with the outcome (Y1) in statistical models will increase the standard 
error and decrease the precision of the treatment effect.2,4,40,41  It is less well known, however, 
that the inclusion of such instrumental variables into statistical models intended to remove 
confounding can increase the bias of an estimated treatment effect.  The bias produced by the 
inclusion of such variables has been termed “Z-bias” as Z is often used to denote an instrumental 
variable.8  
 
Z-bias arises when the variable set is insufficient to remove all confounding, and for this reason 
Z-bias has been described as bias-amplification.42,43  Figure 7.8 illustrates a data generating 
process where unmeasured confounding exists along with an instrumental variable.  In this 
situation, the variation in treatment (A0) can be partitioned into 3 components: the variation 
explained by the instrument (Z0), the variation explained by U1 and the unexplained variation.  
The magnitude of unmeasured confounding is determined by the proportion of variation 
explained by U1, along with the association between U1 and Y1.  When Z0 is statistically 
adjusted, one source of variation in A0 is removed making the variation explained by U1 a larger 
proportion of the remaining variation.  This is what amplifies the residual confounding bias.44  
 

 
 
 
Any plausible instrumental variable can potentially introduce Z-bias in the presence of 
uncontrolled confounding.  Indication for treatment was found to be a strong instrument 45 and 
provider and ecologic causes of variation in treatment choice have been proposed as potential 
instrumental variables that may amplify bias in nonexperimental CER.8  
 

Figure 7.8. Bias is amplified (Z-bias) 
when an instrumental variable (Z0) is 
added to a model with unmeasured 
confounders (U1).	
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A simulation study evaluating the impact of adjusting instruments of varying strength when in 
the presence of uncontrolled confounding demonstrated that the impact of adjusting instrumental 
variables was small in certain situations, which lead the authors to suggest that over-adjustment 
is less of a concern than under-adjustment.  Analytic formulae, on the other hand, indicate that 
this bias may be quite large, especially when dealing with multiple instruments.42  We have 
discussed bias amplification due to adjusting for instrumental variables.  The use of instrumental 
variables, however, can be employed as an alternative strategy to deal with unmeasured 
confounding.46  This strategy is discussed in detail in chapter 10.  
 
We have presented multiple types of variable structures, with a focus on variables that either 
remove or increase bias when adjusted.  The dilemma is that many of these variable types 
statistically behave like confounders, which are the only structural type needing adjustment to 
estimate the average causal effect of treatment.47,48  For this reason, researchers should be 
hesitant to rely on statistical associations alone to select variables for adjustment.  The variable 
structure must be considered when attempting to remove bias through statistical adjustment.   

Proxy	
  Confounders,	
  Mismeasured	
  and	
  Unmeasured	
  Confounders	
  
It is not uncommon for a researcher to be aware of an important confounding variable and to lack 
data on that variable.  A measured proxy can sometimes stand in for an unmeasured confounder.  
For example, use of oxygen canisters could be a proxy for failing health and functional 
impairment and use of preventive services, such as flu shot, is sometime thought to serve as a 
proxy for healthy behavior and treatment adherence.  Likewise, important confounders 
sometimes are measured with error.  For example, self-reported body mass index will often be 
subject to underreporting.   
 
Researchers routinely adjust analyses using proxy confounders and mismeasured confounders.  
Adjusting for a proxy or mismeasured confounder will reduce bias relative to the unadjusted 
estimate provided the effect of the confounder on the treatment and the outcome are 
“monotonic.”48  In other words, any increase in the confounder should on average always affect 
treatment in the same direction, and should always affect the outcome in the same direction for 
both the treated and untreated groups.  If an increase in the confounder increased the outcome for 
the treated group and decreased the outcome for the untreated group, then adjustment for the 
proxy or mismeasured confounder can potentially increase bias.  Unfortunately, there are cases, 
even when the measurement error of the confounder is non-differential (does not depend on 
treatment or outcome) that adjustment for proxy or mismeasured confounders can increase, 
rather than decrease, bias.49  

 
Another common problem in trying to estimate causal effects is that of unmeasured confounding. 
Sensitivity analysis techniques have been developed to address misclassified and unmeasured 
confounding.  The reader is referred to chapter 11 for further discussion of sensitivity analyses. 

Selection	
  of	
  Variables	
  to	
  Control	
  Confounding	
  	
  
We present two general approaches to selecting variables to control confounding in 
nonexperimental CER.  The first approach selects variables based on background knowledge 
about the relationship of the variable to treatment and outcome and the second approach relies 
primarily on statistical associations to select variables for control of confounding and can be 
described as high dimensional automatic variable selection techniques.  The use of background 
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knowledge and causal graph theory is strongly recommended when there is sufficient knowledge 
of the causal structure of the variables.  Sufficient knowledge, however, is likely rare when 
conducting studies across a wide geography and many providers and institutions.  For this 
reason, we also present practical approaches to variable selection that empirically select variables 
based on statistical associations. 

Variable	
  selection	
  based	
  on	
  background	
  knowledge	
  
Causal Graph Theory: Assuming a well-defined fixed treatment employing an intention-to-treat 
paradigm and no set of covariates predicts treatment assignment with 100 percent accuracy, 
control of confounding is all that is needed to estimate causal effects with nonexperimental 
data.47,48  The problem, as described above, is that colliders, intermediate variables, and 
instruments can all statistically behave like confounders.  For this reason, an understanding of the 
causal structure of variables is required to separate confounders from other potential bias-
inducing variables.  This dilemma has led many influential epidemiologists to take a strong 
position for selecting variables for control based on background knowledge of the causal 
structure connecting treatment to outcome.50-54 
 
When sufficient knowledge is available to construct a causal graph, analyzing the structural basis 
for evaluating confounding is the most robust approach to selecting variables for adjustment.  
The goal is to use the graph to identify a sufficient set of variables to achieve unconfoundedness, 
sometimes also called conditional exchangeability.24,55  The researchers specify background 
causal assumptions using causal graph criteria (see Supplement 2).  If the graph is correct then it 
can be used to identify a sufficient set of covariates (C) for estimating an effect of treatment (A0) 
on the outcome (Y1).  A sufficient set C is observed when no variable in C is a descendant of A0 
and C blocks every open path between A0 and Y1 that contains an arrow into A0.  Control of 
confounding using graphical criteria is usually described as the “back-door” criteria, the idea 
being that variables that influence treatment assignment, i.e., variables that have arrows pointing 
to treatment assignment, provide a back-door path between the A0 and Y1.  It is the open back-
door pathways that generate dependencies between A0 and Y1 and can produce spurious 
associations when no causal effect of A0 on Y1 is present and alter the magnitude of the 
association when A0 causally affects Y1. 
 
Although it is quite technical, causal graph theory has formalized the theoretical justification for 
variable selection, added precision to our understanding of bias due to under and over 
adjustment, and unveiled problems with historical notions of statistical confounding.  The main 
limitation of causal graph theory is that it presumes that the causal network is known and that the 
only unknown is the magnitude of the causal contrast between A0 and Y1 being examined.  In 
practice, where observational studies include large multi-use databases spanning vast geographic 
regions, such complete knowledge of causal networks is unlikely.56,57  
 
Since we rarely know the true causal network that represents all common cause pathways 
between treatment and outcome, investigators have proposed more practical variable selection 
approaches based on background knowledge when the causal structure is only partially known.  
These strategies include adjusting for all observed pretreatment variables thought to have some 
connection to the outcome58, all known risk factors for the outcome 4,44,59, and all direct causes 
of the treatment or the outcome.57  The benefits and limitations to each approach to remove 
confounding are briefly discussed. 
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Adjustment for all observed pretreatment covariates: Emphasis is often placed on the treatment 
assignment mechanism and on trying to reconstruct the hypothetical broken randomized 
experiment that led to the observational data.58  Propensity score methods are often employed for 
this purpose and are discussed in chapter 10; they can be used in health care epidemiology to 
statistically control large numbers of variables when outcomes are infrequent.60,61  Propensity 
scores are the probability of receiving treatment given the set of observed covariates.  The 
probability of treatment is estimated conditional on a set of covariates and the predicted 
probability is then used as a balancing score or matching variable across treatment groups to 
estimate the treatment effect.   
 
The importance is often placed on balancing all pretreatment covariates.  However, when 
attempts are made to balance all pretreatment covariates, regardless of their structural form, 
biases, e.g., from including strong instruments and colliders, can result37,57,62, though, as noted 
above, in practice, pretreatment colliders are likely rarer than ordinary confounding variables. 
 
Adjustment for all possible risk factors for the outcome: Confounding pathways require common 
cause structures between the outcome and treatment.  A common strategy for removing 
confounding without incidentally including strong instruments and colliders is to only include 
variables thought to be direct causes of the outcome, i.e., risk factors, in propensity score 
models.4,59,63  This approach only requires background knowledge of causes of the outcome and 
does not require an understanding of the treatment assignment mechanism or how variables that 
influence treatment are related to risk factors for the outcome.  This strategy, however, may fail 
to include measured variables that predict treatment assignment but have an unmeasured ancestor 
that is an outcome risk factor (A0←C0←U1→Y1) as illustrated in Figure 7.3.57  
 
Disjunctive cause criterion: The main practical use of causal graphs is to avoid inconsistencies 
between beliefs and data analysis by not adjusting for known instruments and colliders.51  Thus, 
in practice, one only needs to partly know the causal structure of variables relating treatment to 
the outcome.  The disjunctive cause criterion is a formal statement of the conditions in which 
variable selection based on partial knowledge of the causal structure can remove confounding.57  
It states that all observed variables that are a cause of treatment, or a cause of outcome, or a 
cause of both should be included for statistical adjustment.  When any subset of observed 
variables is sufficient to control confounding, the set obtained by applying the disjunctive cause 
criteria will also constitute a sufficient set.  This approach requires more knowledge of the 
variables’ relationship to the treatment and outcome than the other approaches based on 
background knowledge.  The approach performs well when a sufficient set of variables is 
measured, but presents problems when unmeasured confounding remains.  The problem is the 
same as with Z-bias induced by incorrect use of instrumental variables: conditioning on an 
instrument can amplify the bias due to unmeasured confounding.  
 
Whenever there exists some set of observed variables that block all backdoor paths (even if the 
researcher does not know which subset this is), the disjunctive cause criterion when applied 
correctly by the investigators will identify a set of variables that also blocks all backdoor paths. 
The other variable selection criteria based on all pretreatment covariates and risk factors do not 
have this property.57  The best approach to variable selection is less clear when unmeasured 
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confounding may remain after statistical adjustment for measured variables, which is often 
expected in nonexperimental CER.  In this case, every variable selection approach will result in 
bias.  The focus would then be on minimizing bias, which requires thoughtful consideration of 
the tradeoff between over and under-adjustment.  Strong arguments exist for error on the side of 
over-adjustment (adjusting for instruments and colliders) rather than failing to adjust for 
measured confounders (under-adjustment).36,44  Nevertheless, adjustments for instrumental 
variables have been found to amplify bias in practice.45 

Empirical	
  variable	
  selection	
  approaches	
  	
  
Historically, data collection for nonexperimental studies was primarily collected prospectively 
and thoughtful planning was needed to ensure complete measurement of all important study 
variables.  We now live in an era where every interaction between the patient and the health care 
system produces hundreds, if not thousands, of data points that are recorded for clinical and 
administrative purposes.64  These large multi-use data sources are highly dimensional in that 
every disease, medication, laboratory result and procedure code, along with any electronically 
accessible narrative statements, can be treated as variables.   
 
The new challenge to the researcher is to select a set of variables from this high-dimensional 
space that characterizes the patient’s baseline status at the time of treatment selection to enable 
identification of causal effects or, at least, produces the least biased estimates.  Advances in 
computer performance and the availability of high-dimensional data have provided 
unprecedented opportunities to empirically use data to “learn” associational relationships from 
data.  Empiric variable selection techniques include identifying a subset of variables based on 
statistical associations with the treatment and/or outcome from the original set based on 
background knowledge of the relationship with treatment and/or outcome, as well as methods 
that are considered fully automated where all variables are initially selected based on statistical 
associations.  

Forward	
  and	
  Backward	
  Selection	
  Procedures	
  
When using traditional regression it is not uncommon to use, for the purposes of covariate 
selection, what are sometimes called forward and backward selection procedures.  Forward 
selection procedures begin with an empty set of covariates and then consider whether for each 
covariate, the covariate is associated with the outcome conditional on treatment (usually using a 
p-value cut-off in a regression model of 0.05 or 0.10).  The variable that is most strongly 
associated with outcome (based on having the smallest p-value below the cut-off) is then added 
to the collection of variables for which control will be made.  Then the process begins again, and 
one considers whether each covariate is associated with the outcome conditional on the treatment 
and the covariate already selected; the next covariate that is most strongly associated is again 
added to the list.  The process repeats until all remaining covariates are independent of the 
outcome conditional on the treatment and the covariates that have been previously selected for 
control.  
 
Backward selection begins with all covariates in the model; then the investigator considers 
whether, for each covariate, that covariate is independent of the outcome conditional on the 
treatment and all other covariates (generally using a p-value cut-off in a regression model of 0.05 
or 0.10).  The covariate with the largest p-value above the cut-off is then discarded from the list 
of covariates for which control is made.  The process begins again, and the investigator considers 
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whether, for each covariate, that covariate is independent of the outcome, conditional on the 
treatment and the other covariates not yet discarded; the next covariate with the weakest 
association with the outcome based on p-value is again discarded.  The process repeats itself 
until all variables still in the list are associated with the outcome conditional on the treatment and 
the other covariates that have not been discarded. 
 
Provided that the original set of covariates with which one begins suffices for unconfoundedness 
of treatment effects estimates, then if the backward selection process correctly discards variables 
that are independent of the outcome conditional on the treatment and other covariates, the final 
set of covariates selected by the backwards selection procedure will also yield a set of covariates 
that suffices for conditional exchangeability.57  Likewise, under an additional assumption of 
“faithfulness,”57 the forward selection procedure will identify a set of covariates that suffices for 
unconfoundedness provided that the original set of covariates with which one begins suffices to 
achieve unconfoundedness and that the forward selection process correctly identifies the 
variables that are and are not independent of the outcome conditional on the treatment and other 
covariates.  The forward and backward procedures can thus be useful for covariate reduction but 
both of them suffer from the need to specify a set of covariates to begin with that suffice for 
unconfoundedness.  Thus, even if an investigator intends to employ forward or backward 
selection procedures for covariate reduction, other approaches will be needed to decide on what 
set of covariates these forward and backward procedures should begin with.  Moreover, when the 
initial set of covariates does not suffice for unconfoundedness, it is not clear how forward and 
backward selection procedures will perform.  Variable selection procedures also suffer from the 
fact that estimates about treatment effects are made after having already used the data to decide 
on covariates. 
 
Similar but more sophisticated approaches using machine learning algorithms such as boosting, 
random forest, and other ensemble methods have become increasingly common, as have sparsity 
based methods such as LASSO, in dealing with high-dimensional data.  All of these empirically 
driven methods are, however, limited in that they are in general unable to distinguish between 
instruments, colliders, and intermediates on the one hand and genuine confounders on the other. 
Such differentiation needs to be made a priori on substantive grounds. 

Automatic	
  High-­‐Dimensional	
  “Proxy”	
  Adjustment	
  
In an attempt to capture important proxies for unmeasured confounders, Schneeweiss et al. 
proposed an algorithm that creates a very large set of empirically-defined variables from health 
care utilization data.56  The created variables capture the frequency of codes for procedures, 
diagnoses, and medication fills during a pre-exposure period.  The variables created by the 
algorithm are required to have a minimum prevalence in the source population and to have some 
marginal association with both treatment and outcome.  After they are defined, the variables can 
be entered into a propensity score model.  In several example studies where the true effect of a 
treatment was approximately known from randomized controlled trials, the algorithm appeared 
to perform as well as or better than approaches based on simply adjusting for an a priori set of 
variables.45,65  By defining variables prior to treatment, propensity score methods will not “over-
adjust” by including causal intermediates.  Using statistical associations to select potential 
confounders can result in selection and adjustment of colliders and instruments.  Therefore, the 
analyst should attempt to remove such variables from the set of identified variables.  For 
example, variables that are strong predictors of treatment but have no obvious relation to the 
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outcome should be considered potential sources of Z-bias. 

A	
  Practical	
  Approach	
  Combining	
  Causal	
  Analysis	
  with	
  Empirical	
  Selection	
  
There is a continuum between knowing and not knowing the causal, structural relations of 
variables.  We suggest that a practical approach to variable selection may involve a combination 
of (1) a priori variable selection based on the researcher’s knowledge of causal relationships 
together with (2) empirical selection using the high-dimensional approach described above.8  
The empirical approach could be used to select from a set of a priori variables based on the 
researcher’s knowledge and will ultimately select those to be included in the analysis.  This more 
limited use of empirically-derived variables may reduce confounding while simultaneously 
reducing the risk of including variables that could increase bias.   

Conclusion	
  
In practice, the particular approach that one adopts for observational research will depend on the 
researcher’s knowledge, the data quality, and the number of covariates.  A deep understanding of 
the specific clinical and public health risks and opportunities that lie behind the research question 
often drive these decisions. 
 
Regardless of the strategy employed, researchers should clearly describe how variables are 
measured and provide a rationale for a priori selection of potential confounders, ideally in the 
form of a causal graph.  If the researchers decide to augment the model by using an empiric 
variable selection technique, then they should present both models and describe how the 
additional variables were measured and selected.  Researchers should consider whether or not 
they believe adequate measurement is available in the dataset when employing a specific 
variable selection strategy.  In addition, all variables included for adjustment should be listed in 
the manuscript or final report.  When empiric selection procedures are newly developed or 
modified, researchers are encouraged to make the protocol and code publicly available to 
improve transparency and reproducibility. 
 
Even using the methods we describe in this chapter, confounding can persist.  Sensitivity 
analysis techniques are useful for assessing residual confounding resulting from unmeasured and 
imperfectly measured variables.66-74  Sensitivity analysis techniques assess the extent to which an 
unmeasured variable would have to be related to the treatment and outcome of interest in order to 
substantially change the conclusions drawn about causal effects.  We refer the reader to chapter 
11 for discussion of sensitivity analysis techniques.  
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Covariate	
  Selection	
  in	
  CER	
  Protocols	
  and	
  Proposals	
  
 

Guidance Key Considerations Check 
Describe the data 
source(s) that will be 
used to identify 
important covariates 

-    Provide information about the source(s) of data for key covariates, acknowledging the 
strengths and weaknesses of the data source (e.g., administrative claims, EMRs, chart 
review, patient self-report) for measuring each type of covariate.   

Discuss the potential for 
unmeasured 
confounding and 
misclassification 

-­‐ Discuss the potential impact of unmeasured confounders and misclassification or 
measurement error. 

-­‐ Propose specific formal sensitivity analysis of the impact of unmeasured confounders or 
misclassified variables. 
 

 

Describe the approach 
to be used to select 
covariates for statistical 
models 

-­‐ Approaches based on background knowledge (e.g., selection of all hypothesized common 
causes, disjunctive cause criterion, Directed Acyclic Graphs, or selection of all variables 
thought to be risk factors for the outcome. 

-­‐ Describe model reduction techniques to be used (e.g., forward or backward selection) 
-­‐ Describe empirical variable selection techniques and how variables were removed from 

consideration when they were thought to be bias-inducing rather than bias-reducing 
variables. 
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Chapter	
  8.	
  Selection	
  of	
  Data	
  Sources	
  

Abstract	
  
The research question dictates the type of data required, and the researcher must best match the 
data to the question or decide whether primary data collection is warranted.  This chapter 
discusses considerations for data source selection for comparative effectiveness research (CER).  
Important considerations for choosing data include whether or not the key variables are available 
to appropriately define an analytic cohort and identify exposures, outcomes, covariates, and 
confounders.  Data should be sufficiently granular, contain historical information to determine 
baseline covariates, and represent an adequate duration of follow-up.  The widespread 
availability of existing data from electronic health records, personal health records, and drug 
surveillance programs provides an opportunity for answering CER questions without the high 
expense often associated with primary data collection.  If key data elements are unobtainable in 
an otherwise ideal dataset, methods such as predicting absent variables with available data or 
interpolating for missing time points may be used.  Alternatively, the researcher may link 
datasets.  The process of data linking, which combines information about one individual from 
multiple sources, increases the richness of information available in a study.  This is in contrast to 
data pooling and networking, which are normally used to increase the size of an observational 
study.  Each data source has advantages and disadvantages, which should be considered 
thoroughly in light of the research question of interest, as the validity of the study will be 
dictated by the quality of the data.  This chapter concludes with a checklist of key considerations 
for selecting a data source for a CER protocol or proposal. 

Introduction	
  	
  	
  
Identifying appropriate data sources to answer comparative effectiveness research (CER) 
questions is challenging.  While the widespread availability of existing data provides an 
opportunity for answering CER questions without the high expense associated with primary data 
collection, the data source must be chosen carefully to ensure that it can address the study 
question, has a sufficient number of observations, that key variables are available, that there is 
adequate confounder control, and that there is a sufficient length of follow-up. 
 
This chapter describes data that may be useful for observational CER studies and the sources of 
these data, including data collected for both research and non-research purposes.  The chapter 
also explains how the research question should dictate the type of data required and how to best 
match data to the issue at hand.  Considerations for evaluating data quality (e.g., demonstrating 
data integrity) and privacy protection provisions are discussed.  The chapter concludes by 
describing new sources of data that may expand the options available to CER researchers to 
address questions.  Recommendations for “best practices” regarding data selection are included, 
along with a checklist that researchers may use when developing and writing a CER protocol.  
To start, however, it is important to consider primary data collection for observational research, 
since the use of secondary data may be impossible or unwise in some situations. 

Data	
  Options	
  
Primary data are information collected expressly for research.  Observational studies, meaning 
studies with no dictated intervention, require the collection of new data if there are no adequate 
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existing data for testing hypotheses.  In contrast, secondary data refer to data that were collected 
for other purposes and that are being used secondarily to answer a research question.  There are 
other ways to categorize data, but this classification is useful because the types of information 
collected for research differ markedly from the types of information collected for non-research 
purposes.  

Primary	
  Data	
  	
  
Primary data are collected by the investigator directly from study participants to address a 
specific question or hypothesis.  Data can be collected by in-person or telephone interviews, mail 
surveys, or computerized questionnaires.  While primary data collection has the advantage of 
being able to address a specific study question, it is often time consuming and expensive.  The 
observational research designs that often require primary data collection are described here.  
While these designs may also incorporate existing data, we describe them here in the context of 
primary data collection.  The need to use these designs is determined by the research question; if 
the research question clearly must be answered with these designs below, primary data collection 
may be required.  Additional detail about the selection of suitable study design for observational 
CER is presented in chapter 2.  

Prospective	
  Observational	
  Studies	
  
Observational studies are those in which individuals are selected on the basis of specific 
characteristics and their progress is monitored.  A key concept is that the investigator does not 
assign the exposure(s) of interest.  There are two basic observational designs: 1) cohort studies, 
where selection is based on exposure and participants are followed for the occurrence of a 
particular outcome, and 2) case-control studies, where selection is based on a disease or 
condition and participants are contacted to determine a particular exposure.  
 
Within this framework, there are a wide variety of possible designs.  Participants can be 
individuals or groups (e.g., schools or hospitals); they can be followed into the future 
(prospective data collection) or asked to recall past events (retrospective data collection); and, 
depending on the specific study questions, elements of the two basic designs can be combined 
into a single study (e.g., case-cohort or nested case-control studies).  If information is also 
collected on those who are either not exposed or do not have the outcome of interest, 
observational studies can be used for hypothesis testing. 
 
An example of a prospective observational study is a recent investigation comparing medication 
adherence and viral suppression between once-daily and more-than-once daily pill regimens in a 
homeless and near-homeless HIV-positive population.1  Adherence was measured using 
unscheduled pill-count visits over the six-month study period while viral suppression was 
determined at the end of the study.  The investigators found that both adherence and viral 
suppression levels were higher in the once-daily groups compared to the more-than-once-daily 
groups.  The results of this study are notable as they indicate an effective method to treat HIV in 
a particularly hard to reach population.  

Registries	
  	
  
In the most general sense, a registry is a systematic collection of data.  Registries that are used 
for research have clearly stated purposes and targeted data collection.   
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Registries use an observational study design that does not specify treatments or require therapies 
intended to change patient outcomes.  There are generally few inclusion and exclusion criteria to 
make the results broadly generalizable.  Patients are typically identified when they present for 
care, and the data collected generally include clinical and laboratory tests and measurements. 
Registries can be defined by specific diseases or conditions (e.g., cancer, birth defects, or 
rheumatoid arthritis), exposures (e.g., to drug products, medical devices, environmental 
conditions, or radiation), time periods, or populations.  Depending on their purpose and the 
information collected, registry data can potentially be used for public health surveillance, to 
determine incidence rates, to perform risk assessment, to monitor progress, and to improve 
clinical practice.  Registries can also provide a unique perspective into specialized 
subpopulations.  However, like any long-term study, they can be very expensive to maintain due 
to the effort required to remain in contact with the participants over extended periods of time.   
 
Registries have been used extensively for CER.  As an example, the United States Renal Data 
System (USRDS) is a registry of individuals receiving dialysis that includes clinical data as well 
as medical claims.  This registry has been used to answer questions about the comparative 
effectiveness and safety of erythropoiesis-stimulating agents and iron in this patient population,2 
the comparative effectiveness of dialysis chain facilities,3 and the effectiveness of nocturnal 
versus daytime dialysis.4  Another registry is the Surveillance, Epidemiology, and End Results 
(SEER) registry, which gathers data on Americans with cancer.  Much of the SEER registry’s 
value for CER comes from its linkage to Medicare data.  Examples of CER studies that make use 
of this linked data include an evaluation of the effectiveness of radiofrequency ablation for 
hepatocellular carcinoma compared to resection or no treatment5 and a comparison of the safety 
of open versus radical nephrectomy in individuals with kidney cancer.6  A third example is a 
study that used SEER data to evaluate survival among individuals with bladder cancer who 
underwent early radical cystectomy compared to those patients who did not.7 

Secondary	
  Data	
  
Much secondary data that are used for CER can be considered by-products of clinical care.  The 
framework developed by Schneeweiss and Avorn is a useful structure with which to consider the 
secondary sources of data that are generated within this context.8  They described the “record 
generation process”, which is the information generated during patient care.  Within this 
framework, data are generated in the creation of the paper-based or electronic medical (health) 
record, claims are generated so that providers are paid for their services, and claims and 
dispensing records are generated at the pharmacy at the time of payment.  As data are not 
collected specifically for the research question of interest, particular attention must be paid to 
ensure that data quality is sufficient for the study purpose.     

 
A thorough understanding of the health system in which patients receive care and the insurance 
products they use is needed for a clear understanding of whether the data are likely to be 
complete or unavailable for the population of interest.  Integrated health delivery systems such as 
Kaiser Permanente, in which patients receive the majority of their care from providers and 
facilities within the system, provide the most complete picture of patient medical care. 

Electronic	
  health	
  record	
  (EHR)	
  data	
  
Electronic health records (EHRs) are used by health care providers to capture the details of the 
clinical encounter.  They are chiefly clinical documentation systems.  They are populated with 
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some combination of free text describing findings from the history and the physical examination; 
results inputted with check-boxes to indicate positive responses; pre-filled templates that 
describe normal and abnormal findings; imported text from earlier notes on the patient; and 
linkages to laboratory results, radiology reports and images, and specialized testing results (such 
as electrocardiograms, echocardiograms, or pulmonary function test results).  Some EHRs 
include other features, such as flow sheets of clinical results, particularly those used in inpatient 
settings (e.g., blood pressure measurements); problem and habits lists, electronic medication 
administration records; medication reconciliation features; decision support systems and/or 
clinical pathways and protocols; and specialty features for the documentation needs of specialty 
practices.  The variables that might be accessible from EHR data are shown in Table 8.1.  
 
Table 8.1. Data Elements Available in Electronic Health Records and/or in Administrative 
Claims Data 
 

Information EHRs Administrative Claims 
Prescriptions ordered Yes No 
Pharmacy data (drugs dispensed) Sometimes Yes 
Medication list Often No 
Clinical data: vital signs or point of care 
testing results 

Yes* No 

Clinical data: inpatient Yes* No 
Clinical data: outpatient Yes* No 
Age/sex Yes Yes 
Race/ethnicity Sometimes Sometimes 
Socioeconomic data Sometimes Inferred (from zip code) 
Insurance information Yes Yes 
Spontaneously reported adverse events Yes  Yes  
Diagnoses or procedures coded for payment No Yes 
Behavioral risk factors Yes* No 
Diet Sometimes* No 
Indicators of procedures having being done 
(laboratory, radiologic, therapeutic) 

Yes Yes 

Results from diagnostic procedures 
(echocardiography, radiology) 

Yes No 

Laboratory results Yes No 
Problem list or summary Yes No 
*It should be noted that clinical data available in EHRs are often missing informatively in high proportions.  For 
example, a study examining data quality issues in an EHR-based survival analysis of patients with pancreatic cancer 
found that patients with late-stage ductal adenocarcinomas were more likely to have missing biochemistry lab data 
compared to early-stage patients (6-9% incomplete in early-stage patients versus 13-23% incomplete in late-stage 
patients).9  The authors conclude that this was likely due to terminally-ill patients receiving care outside of the EHR 
system in dedicated cancer treatment centers.  
 
As can be seen from the variable list, the details about an individual patient may be extensive. 
The method of data collection is not standardized and the intervals between visits vary for every 
patient.  Of note, medication information captured in EHRs differs from data captured by 
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pharmacy claims.  While pharmacy claims contain information on medications dispensed 
(including the national drug code [NDC] to identify the medication, dispensing date, days’ 
supply, and amount dispensed), EHRs more typically contain information on medications 
prescribed by a clinician.  Medication data from EHRs are often captured as part of the patient’s 
medication list, which may include the medication name, order date, strength, units, quantity, 
and frequency. As EHRs differ substantially, it is important to understand what fields are 
captured in the EHR under consideration and that completeness of specific fields may vary 
depending on how individual health care providers use the EHR.  
 
An additional challenge with EHR data is that patients may receive care at different facilities, 
and information regarding their health may be entered separately into multiple systems that are 
not integrated.  If a patient has an emergency room visit at a hospital that is not his usual site of 
care, it is unlikely to be recorded in the electronic medical record that houses the majority of his 
clinical information.  Additionally, for a patient who resides in two or more cities during the 
year, the electronic medical record at each institution may be incomplete if the institutions do not 
share a common data system.   

Paper-­‐based	
  Records	
  
Although time intensive to access, the use of paper-based records is sometimes required.  Many 
practices still do not have EHRs; in 2009, it was estimated that only half of outpatient practices 
in the U.S. were using EHRs.10  Exclusion of sites without electronic records may bias study 
results because these sites have different patient populations or because of regional differences in 
practice.  These data may be particularly valuable if patient-reported information is needed (such 
as severity of pain, quality of symptoms, mental health concerns, and habits).  The richness of 
information in paper-based records may exceed that in EHR data particularly if the electronic 
data is template driven.  Additionally, paper-based records are valuable as a source of primary 
data for validating data that is available elsewhere such as in administrative claims.  With a paper 
medical record, the researcher can test the sensitivity and specificity of the information contained 
in claims data by reviewing the paper record to see if the diagnosis or procedure was described. 
In that situation, the paper-based record would be considered the reference standard for 
diagnoses and procedures.  

Administrative	
  data	
  
Administrative health insurance data are typically generated as part of the process of obtaining 
insurance reimbursement.  Presently, medical claims are most often coded using the International 
Classification of Disease (ICD) and the Common Procedural Terminology (CPT) systems.  The 
ICD, Ninth Revision, Clinical Modification (ICD-9-CM) is the official system of assigning codes 
to diagnoses and procedures associated with hospital utilization in the United States.  Much of 
Europe is using ICD-10 already, while the U.S. currently uses ICD-9 for everything except 
mortality data; the U.S. will start using ICD-10 in October 2013.11  The ICD coding terminology 
includes a numerical list of codes identifying diseases, as well as a classification system for 
surgical, diagnostic, and therapeutic procedures.  The National Center for Health Statistics and 
the Centers for Medicare and Medicaid Services (CMS) are responsible for overseeing 
modifications to the ICD.  For outpatient encounters, the CPT is used for submitting claims for 
services.  This terminology was initially developed by the American Medical Association in 
1966 to encourage the use of standard terms and descriptors to document procedures in the 
medical record, to communicate accurate information on procedures and services to agencies 
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concerned with insurance claims, to provide the basis for a computer-oriented system to evaluate 
operative procedures, and for actuarial and statistical purposes.  Presently, this system of 
terminology is the required nomenclature to report outpatient medical procedures and services to 
U.S. public and private health insurance programs, as the ICD is the required system for 
diagnosis codes and inpatient hospital services.12  The diagnosis-related group (DRG) 
classification is a system to classify hospital cases by their ICD codes into one of approximately 
500 groups expected to have similar hospital resource use; it was developed for Medicare as part 
of the prospective payment system.  The DRG system can be used for research as well, but with 
the recognition that there may be clinical heterogeneity within a DRG.  There is no correlate of 
the DRG for outpatient care. 
 
When using these claims for research purposes, the validity of the coding is of the highest 
importance.  This is described in more detail below.  The validity of codes for procedures 
exceeds the validity for diagnostic codes, as procedural billing is more closely tied to 
reimbursement.  Understandably, the motivation for coding procedures correctly is high.  For 
diagnosis codes, however, a diagnosis that is under evaluation (e.g., a medical visit or test to 
“rule out” a particular condition) is indistinguishable from a diagnosis that has been confirmed.  
Consequently, researchers tend to look for sequences of diagnoses, or diagnoses followed by 
treatments appropriate for those diagnoses, in order to identify conditions of interest.  Although 
Medicare requires an appropriate diagnosis code to accompany the procedure code to authorize 
payment, other insurers have looser requirements.  There are few external motivators to code 
diagnoses with high precision, so the validity of these codes requires an understanding of the 
health insurance system’s approach to documentation.13,14,15,16,17,18,19,20  Investigators using 
claims data for CER should validate the key diagnostic and procedure codes in the study.  There 
are many examples of validation studies in the literature upon which to pattern such a 
study.18,21,22  Additional codes are available in some datasets - for example, the “present on 
admission” code that has been required for Medicare and Medicaid billing since October 2007, 
which may help in further refinement of algorithms for identifying key exposures and outcomes.  

Pharmacy	
  Data	
  
Outpatient pharmacy data include claims submitted to insurance companies for payment as well 
as the records on drug dispensing kept by the pharmacy or by the pharmacy benefits manager 
(PBM).  Claims submitted to the insurance company use the NDC as the identifier of the 
product.  The NDC is a unique, 10-digit, three-segment number that is a standard product 
identifier for human drugs in the U.S.  Included in this number is the active ingredient, the 
dosage form and route of administration, the strength of the product, and the package size and 
type.  The Food and Drug Administration (FDA) has authority over the NDC codes.  Claims 
submitted to insurance companies for payment for drugs are submitted with the NDC code as 
well as information about the supply dispensed (how many days the prescription is expected to 
cover), and the amount of medication dispensed.  This information can be used to provide a 
detailed picture of the medications dispensed to the patient.  Medications for which a claim is not 
submitted, or is not covered, by the insurance plan (e.g., over-the-counter medications) are not 
available.  It should be noted that claims data are generally weak for medical devices, due to the 
lack of uniform coding, and claims often do not include drugs that are not dispensed through the 
pharmacy (e.g., injections administered in a clinic).   
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Large national PBMs, such as Medco Health Solutions or Caremark, administer prescription 
drug programs and are responsible for processing and paying prescription drug claims.  They are 
the interface between the pharmacies and the payers.  PBM models differ substantially, but most 
maintain formularies, contract with pharmacies, and negotiate prices with drug manufacturers.  
The differences in formularies across PBMs may offer researchers the advantage of natural 
experiments, as some patients will not be dispensed a particular medication, even when 
indicated, while other patients will be dispensed the medication, solely due to the formulary 
differences of their PBMs.  Some PBMs own their own mail-order pharmacy, eliminating the 
local pharmacies’ role in distributing medications.  PBMs more recently have taken on roles of 
disease management and outcomes reporting, which generates additional data that may be 
accessible for research purposes.  Figure 8.1 illustrates the flow of information into PBMs from 
health plans, pharmaceutical manufacturers, and pharmacies.  PBMs contain a potentially rich 
source of data for CER, provided that these data can be linked with outcomes.  Examples of CER 
that has been done using PBM data include two studies that evaluate patient adherence to 
medications as their outcome.  One compared adherence to different antihypertensive 
medications using data from Medco Health Solutions.  The researchers identified differential 
adherence to antihypertensive drugs, which has implications for their effectiveness in practice.23  
Another study compared costs associated with a step-therapy intervention that controlled access 
to angiotensin-receptor blockers and costs associated with open access to these drugs.24  Data 
came from three health plans that contracted with one PBM and one health plan that contracted 
with a different PBM.   
 
Figure 8.1. How Pharmacy Benefits Managers Fit in Payment System for Prescription 
Drugs 

 

 
 

Source: Congressional Budget Office based in part on General Accounting Office, Pharmacy Benefit Managers: 
Early Results on Ventures  with Drug Manufacturers, GAO/HEHS-96-45 (November 1995).   
 
Frequently, PBM data are accessible through health insurers along with related medical claims, 
thus enabling single source access to data on both treatment and outcomes.  The Veterans Affairs 
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(VA) Pharmacy Benefits Manager data, combined with the VA data or linked to Medicare 
claims, are a valuable resource that has generated comparative effectiveness and safety 
information.25,26  

Regulatory	
  Data	
  
FDA has a vast store of data from submissions for regulatory approval from manufacturers.  
While the majority of the submissions are not in a format that is usable for research (paper-based 
submissions or PDFs), increasingly, the submissions are in formats where the data may be used 
for purposes beyond that for which they were collected, including CER.  Additionally, FDA is 
committed to converting many of their older datasets into research-appropriate data.  FDA 
presently has a contractor working on conversion of 101 trials into useable data that will be 
stored in their clinical trial repository.27  They also currently have pilot projects underway that 
are exploring the benefits and risks of providing external researchers access to their data for 
CER.  It is recognized that issues of using proprietary data or trade-secret data will arise, and that 
there may be regulatory and data-security challenges to address.  A limitation of using these 
trials for CER is that they are typically efficacy trials rather than effectiveness trials.  However, 
when combined using techniques of meta-analysis, they may provide a comprehensive picture of 
a drugs’ efficacy and short-term safety.   

Repurposed	
  trial	
  data	
  or	
  data	
  from	
  completed	
  observational	
  studies	
  
There is a vast amount of data collected for clinical research in studies funded by the federal 
government.  By law, these data must be made available upon request to other researchers, as 
this was information collected with taxpayer dollars.  This is an exceptional source of existing 
data.  To illustrate, the Cardiovascular Health Study is a large cohort study that was designed to 
identify risk factors for coronary heart disease and stroke with a population-based longitudinal 
cohort study.28  The study investigators collected diverse outcomes including information on 
hospitalization and specifically heart-failure associated hospitalizations.  Thus, the data from this 
study can be used to answer comparative effectiveness questions about interventions and their 
effectiveness on preventing heart failure complications, even though this was not a primary aim 
of the original cohort study.  A limitation is that the researcher is limited to only the data that 
were collected - an important consideration when selecting a dataset.  Some of the datasets have 
associated biospecimen repositories from which specimens can be requested for additional 
testing. 
 
Completed studies with publicly available datasets can often be identified through the National 
Institute of Health organization that funded the study.  For example, the National Heart Lung and 
Blood Institute has a searchable site (at https://biolincc.nhlbi.nih.gov/home/) where datasets can 
be identified and requested.  Similarly, the National Institute of Diabetes and Digestive and 
Kidney Diseases has a repository of datasets as well as instructions for requesting data (at 
https://www.niddkrepository.org/niddk/jsp/public/resource.jsp).   
 

Considerations	
  for	
  Selecting	
  Data	
  

Required	
  Data	
  Elements	
  
The research question must drive the choice of data.  Frequently, however, as the question is 
developed, it becomes clear that a particular piece of information is critical to answering the 
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question.  For example, a question about interventions that reduce the amount of albuminuria 
will almost certainly require access to laboratory data that includes measurement of this 
outcome.  Reliance on ICD-9 codes or use of a statement in the medical record that “albuminuria 
decreased” will be insufficiently specific for research purposes.  Similarly, a study question 
about racial differences in outcomes from coronary interventions requires data that include 
documentation of race – this precludes use of most administrative data from private insurers that 
do not collect this information.  If the relevant data are not available in an existing data source, 
this may be an indication that primary data collection or linking of datasets is in order.  It is 
recommended that the investigator specify a priori what the minimum requirements of the data 
are before the data are identified, as this will help avoid the effort of making suboptimal data 
work for a given study question.  
 
If some key data elements seem to be unobtainable in an otherwise suitable dataset, one might 
consider ways to supplement the available data.  These methods may be methodological, such as 
predicting absent data variables with data that are available, or interpolating for missing time 
points.  The authors recently completed a study in which the presence of obesity was predicted 
for individuals in the dataset based on ICD-9 codes.29  In such instances, it is desirable to provide 
a reference to support the quality of data obtained by such an approach. 
 
Alternatively, there may be the need to link datasets or to use already linked datasets.  SEER-
Medicare is an example of an already linked dataset that combines the richness of the SEER 
cancer diagnosis data with claims data from Medicare.30  Unique patient identifiers that can be 
linked across datasets (such as social security numbers) provide opportunities for powerful 
linkages with other datasets.31  Other methods have been developed that do not rely on the 
existence of unique identifiers.32  As described above, linking medical data with environmental 
data, population-level data, or census data provides rich datasets for addressing research 
questions.  Privacy concerns by individual contributors can greatly increase the complexity and 
time needed for a study with linked data.  
 
Data linking combines information from multiple sources on the same person to increase the 
richness of information available in a study.  This is in contrast to data pooling and networking, 
which are tools primarily used to increase the size of an observational study.   

Time	
  Period	
  and	
  Duration	
  of	
  Follow-­‐up	
  
In an ideal situation, researchers have easy access to low-cost, clinically-rich data about patients 
who have been continuously observed for long periods of time.  This is seldom the case.  Often, 
the question being addressed is sensitive to the time the data were collected.  If the question is 
about a newly available drug or device, it will be essential that the data capture the time period of 
relevance.  Other questions are less sensitive to secular changes, in which case, older data may 
be acceptable. 
 
Inadequate length of follow-up for individuals is often the key time element that makes data 
unusable.  How long is necessary depends on the research question; in most cases, information 
about outcomes associated with specific exposures requires a period of follow-up that takes the 
natural history of the outcomes into account.  Data from registries or from clinical care may be 
ideal for studies requiring long follow-up.  Commercial insurers see large amounts of turnover in 
their covered patient populations, which often makes the length of time that data are available on 



                                                                                      Chapter 8. Selection of Data Sources  

 148 

a given individual relatively short.  This is also the case with Medicaid data.  The populations in 
data from commercial insurers or Medicaid, however, are so large that reasonable numbers of 
relevant individuals with long follow-up can often be identified.  It should be noted that when a 
study population is restricted to patients with longer than typical periods of follow-up within a 
database, the representativeness of those patients should be assessed.  Individuals insured by 
Medicare are typically insured by Medicare for the rest of their lives, so these data are often 
appropriate for longitudinal research, especially when they can be coupled with data on drug use.  
Similarly, the VA health system is often a source of data for CER because of the relatively stable 
population that is served and the detail of the clinical information captured in their electronic 
records.  
 
Table 8.2 provides the types of questions, with an example for each, that an investigator should 
ask his or herself when choosing data.   
 
Table 8.2. Questions to Consider when Choosing Data 
 

Question to Ask Example 
Are the key variables available to 
define an analytic cohort (the study 
inclusion and exclusion criteria)?  

Do the data contain height and weight or BMI to 
define a cohort of overweight or obese subjects? 

Are the key variables available for 
identifying important subpopulations 
for the study? 

Do the data contain a variable describing race for a 
study of racial differences in outcomes of coronary 
stenting? 

Are the key variables available for 
identifying the relevant exposures, 
outcomes, and important covariates 
and confounders? 

Do the data contain information on disease 
severity to assess the comparative effectiveness of 
conservative versus intensive management of 
prostate cancer (disease severity is a likely 
confounder)? 

Are the data sufficiently granular for 
the purpose of the study? 

Is it adequate to know whether the individual has 
hypertension or not, or is it important to know that 
the individual has Stage I or Stage III 
hypertension? 

Are there a sufficient number of 
exposed individuals in the dataset? 

Are there enough individuals who filled 
prescriptions for exenatide to study the outcomes 
from this medication? 

Do the data contain a sufficiently 
long duration of follow-up after 
exposures? 

Are there data on weight for at least three years 
after bariatric surgery? 

Are there sufficient historical data to 
determine baseline covariates? 

Is there information on hospitalizations in the year 
prior to cardiac resynchronization therapy for an 
observational study of outcomes from the device? 

Is there a complete dataset from all 
appropriate settings of care to 
comprehensively identify exposures 
and outcomes? 

Is there a record of emergency department visits in 
addition to a record of outpatient and hospitalized 
care in a study of children with asthma? 
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Question to Ask Example 
Is there availability of data on other 
exposures outside of the healthcare 
setting?  

Are there data on aspirin exposure when purchased 
over the counter in a study of outcomes after 
myocardial infarction? 

Are there a sufficient number of 
observations in the dataset if 
restricting the patient population is 
necessary for internal validity (e.g., to 
new users)? 

Are there a sufficient number of new users (based 
on a “washout period” of at least 6 months) of 
each selective and non-selective NSAID to study 
outcomes in users of each of these medications? 

What is the difference between the 
study and target population 
demographics and distributions of 
comorbid illnesses?  Will these 
differences affect the interpretation 
and generalizability of the results? 

Is the age range of the data source appropriate to 
address the study question?  Can any differences 
in demographics between data source and target 
population be addressed through appropriate 
design or analysis approaches? 

Ensuring	
  Quality	
  Data	
  
When considering potential data resources for a study, an important element is the quality of the 
information in the resource.  Using databases with large amounts of missing information, or that 
do not have rigorous and standardized data editing, cleaning, and processing procedures 
increases the risk of inconclusive and potentially invalid study results. 

Missing	
  Data	
  
One of the biggest concerns in any investigation is missing data.  Depending on the elements and 
if there is a pattern in the type and extent of missing-ness, missing data can compromise the 
validity of the resource and any studies that are done using that information.  It is important to 
understand what variables are more or less likely to be missing, to define a priori an acceptable 
percent of missing data for key data elements required for analysis, and to be aware of the efforts 
an organization takes to minimize the amount of missing information.  For example, data 
resources that obtain data from medical or insurance claims will generally have higher 
completion rates for data elements used in reimbursement, while optional items will be 
completed less frequently.  A data resource may also have different standards for individual 
versus group-level examination.  For example, while ethnicity might be the only missing variable 
in an individual record, it could be absent for a significant percentage of the study population. 
 
Some investigators impute missing data elements under certain circumstances.  For example, in a 
longitudinal resource, data that were previously present may be carried forward if the latest 
update of a patient’s information is missing.  Statistical imputation techniques may be used to 
estimate or approximate missing data by modeling the characteristics of cases with missing data 
to those who have such data.33,34,35  Data that have been generated in this manner should be 
clearly identified so that they can be removed for sensitivity analyses, as may be appropriate.  
Additional information about methods for handling missing data in analysis is covered in chapter 
10.  
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Changes	
  That	
  May	
  Alter	
  Data	
  Availability	
  and	
  Consistency	
  Over	
  Time	
  
Any data resource that collects information over time is likely to eventually encounter changes in 
the data that will affect longitudinal analyses.  These changes could be either a singular event or 
a gradual shift in the data and can be triggered by the organization that maintains the database or 
by events beyond the control of that organization including adjustments in diagnostic practices, 
coding and reimbursement modifications, or increased disease awareness.  Investigators should 
be aware of these changes as they may have a substantial effect on the study design, time period, 
and execution of the project. 
 
Sudden changes in the database may be dealt with by using trend breaks.  These are points in 
time where the database is discontinuous, and analyses that cross over these points will need to 
be interpreted with care.  Examples of trend break events might be major database upgrades 
and/or redesigns or changes in data suppliers.  Other trend break events that are outside the 
influence of the maintenance organization might be medical coding upgrades (e.g., ICD-9 to 
ICD-10), announcements or presentations at conferences (e.g., Women’s Health Initiative 
findings) that may lead to changes in medical practice, or high profile drug approvals or 
withdrawals. 
 
More gradual events can also affect the data availability.  Software upgrades and changes might 
result in more data being available for recently added participants versus individuals who were 
captured in prior versions.  Changes in reimbursement and recommended practice could lead to 
shifts in use of ICD-9 codes, or to more or less information being entered for individuals. 

Validity	
  of	
  Key	
  Data	
  Definitions	
  	
  
Validity assessment of key data in an investigation is an important but sometimes overlooked 
issue in health care research using secondary data.  There is a need to assess not only the general 
definition of key variables, but also their reliability and validity in the particular database chosen 
for the analysis.  In some cases, particularly for data resources commonly used for research, 
other researchers or the organization may have validated outcomes of health events (e.g., heart 
attack, hospitalization, or mortality).36  Creating the best definitions for key variables may 
require the involvement of knowledgeable clinicians who might suggest that the occurrence of a 
specific procedure or a prescription would strengthen the specificity of a diagnosis.  Knowing the 
validity of other key variables, such as race/ethnicity, within a specific dataset is essential 
particularly if results will be described in these subgroups.  
 
Ideally, validity is examined by comparing study data to additional or alternative records that 
represent a “gold standard”, such as paper-based medical records.  We described in the 
Administrative Data section above how validity of diagnoses associated with administrative 
claims might be assessed relative to paper-based records.  EHRs and non-claims-based resources 
do not always allow for this type of assessment, but a more accommodating validation process 
has not yet been developed.  When a patient’s primary health care record is electronic, there may 
not be a paper trail to follow.  Commonly, all activity is integrated into one record, so there is no 
additional documentation.  On the other hand, if the data resource pulls information from a 
switch company (organizations that specialize in routing claims between the point of service and 
an insurance company), there may be no mechanism to find additional medical information for 
patients.  In those cases, the information included in the database is all that is available to 
researchers.  
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Data	
  Privacy	
  Issues	
  
Data privacy is an ongoing concern in the field of health care research.  Most researchers are 
familiar with the Health Insurance Portability and Accountability Act (HIPAA), enacted in 1996 
in part to standardize the security and privacy of healthcare information.  HIPAA coined the term 
“protected healthcare information” (PHI), defined as any individually identifiable healthcare 
information (45 CFR 160.103).  HIPAA requires that patients be informed of the use of their PHI 
and that covered entities (generally, healthcare clearinghouses, employer sponsored health plans, 
health insurers, and medical service providers) track the use of PHI.  HIPAA also provides a 
mechanism for patients to report when they feel these regulations have been violated.37   
 
In practical terms, this has resulted in an increase in the amount and complexity of 
documentation and permissions required to conduct healthcare research and a decrease in patient 
recruitment and participation levels.38,39  While many data resources have established procedures 
that allow for access to data without personal identifiers, obtaining permission to use identifiable 
information from existing data sources (e.g., from chart review) or for primary data collection 
can be time consuming.  Additionally, some organizations will not permit research to proceed 
beyond a certain point (e.g., beginning or completing statistical analyses, dissemination, or 
publication of results) without proper institutional review board approvals in place.  If a non-U.S. 
data resource is being used, researchers will need to be aware of differences between U.S. 
privacy regulations and those in the country where the data resource resides. 
 
Adherence to HIPAA regulations can also affect study design considerations.  For example, 
since birth, admission, and discharge dates are all considered to be PHI, researchers may need to 
use a patient’s age at admission and length of stay as unique identifiers. Alternatively, a limited 
data set that includes PHI but no direct patient identifiers such as name, address, or medical 
record numbers may be defined and transferred with appropriate data use agreements in place. 
Organizations may have their own unique limits on data sharing and pooling.  For example, in 
the VA system, the general records and records for condition-specific treatment, such as HIV 
treatment, may not be pooled.  Additional information regarding HIPAA regulations as they 
apply to data used for research may be found on the National Institutes of Health website.40   

Emerging	
  Issues	
  and	
  Opportunities	
  

Data	
  from	
  Outside	
  of	
  the	
  United	
  States	
  
Where appropriate, non-U.S. databases may be considered to address CER questions, 
particularly for longitudinal studies.  One of the main reasons is that, unlike the majority of U.S. 
health care systems, several countries with single-payer systems, such as Canada, the United 
Kingdom, and the Netherlands, have regional or national EMR systems.  This makes it much 
easier to obtain complete, long-term medical records and to follow individuals in longitudinal 
studies.41   

 
The Clinical Practice Research Datalink (CPRD) is a collection of anonymised primary care 
medical records from selected general practices across the United Kingdom.  These data have 
been linked to many other datasets to address comparative effectiveness questions.  An example 
is a study that linked the CPRD to the Myocardial Ischaemia National Audit Project registry in 
England and Wales.  The researchers answered questions about the risks associated with 
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discontinuing clopidogrel therapy after a myocardial infarction (performed when the database 
was called General Practice Research Database).42  
 
While the selection of a non-U.S. data source may be the right choice for a given study, there are 
a number of things to consider when designing a study using one of these resources. 
 
One of the main considerations is if the study question can be appropriately addressed using a 
non-U.S. resource.  Questions that should be addressed during the study design process include: 
 

• Is the exposure of interest similar between the study and target population?  For example, 
if the exposure is a drug product, is it available in the same dose and form in the data 
resource?  Is it used in the same manner and frequency as in the U.S.?   

• Are there any differences in availability, cost, practice, or prescribing guidelines between 
the study and target populations?  Has the product been available in the study population 
and the U.S. for similar periods of time? 

• What is the difference between the healthcare systems of the study and target 
populations?  Are there differences in diagnosis methods and treatment patterns for the 
outcome of interest?  Does the outcome of interest occur with the same frequency and 
severity in the study and target populations? 

• Are the comparator treatments similar to those that would be available and used in the 
U.S.? 

 
An additional consideration is data access.  Access to some resources, such as the United 
Kingdom’s CPRD, can be purchased by interested researchers.  Others, such as Canada’s 
regional healthcare resources, may require the personal interest of and an official association 
with investigators in that country who are authorized to use the system.  If a non-U.S. data 
resource is appropriate for a proposed study, the researcher will need to become familiar with the 
process for accessing the data and allow for any extra time and effort required to obtain 
permission to use it.  
 
A sound justification for selecting a non-U.S. data resource, a solid understanding of the 
similarities and differences of the non-U.S. versus the U.S. systems, as well as careful discussion 
of whether the results of the study can be generalized to U.S. populations will help other 
researchers and health care practitioners in interpreting and applying the results of non-U.S.-
based research to their particular situations. 

Point	
  of	
  Care	
  Data	
  Collection	
  and	
  Interactive	
  Voice	
  Response/Other	
  Technologies	
  
Traditionally, the data used in epidemiologic studies have been gathered at one point in time, 
cleaned, edited, and formatted for research use at a later point.  As technology has developed, 
however, data collected close to the point of care increasingly have been available for analysis.  
Prescription claims can be available for research in as little as one week. 
 
In conjunction with a shortened turnaround time for data availability, the point at which data are 
coded and edited for research is also occurring closer to when the patient received care.  Many 
people are familiar with healthcare encounters where the physician takes notes, which are then 
transcribed and coded for use.  With the advent of EHRs, health information is now coded and 
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transcribed into a searchable format at the time of the visit – information is directly coded as it is 
collected, rather than being transcribed later. 
 
Another innovation is using computers to collect data.  Computer-aided data collection has been 
used in national surveys since the 1990s43 and also in types of research (such as risky behaviors, 
addiction, and mental health) where respondents might not be comfortable responding to a 
personal interviewer.44,45,46  
 
The advantages of these new and timely data streams are more detailed data, sometimes 
available in real or near-real time that can be used to spot trends or patterns.  Since data can be 
recorded at the time of care by the health care provider, this may help minimize miscoding and 
misinterpretation.  Computerized data collection and Interactive Voice Response are becoming 
easier and less expensive to use and enable investigators to more easily reach more participants.  
Some disadvantages are that these data streams are often specialized (e.g., bedside prescribing), 
and, without linkage to other patient characteristics, it can be difficult to track unique patients.  
Also, depending on the survey population, it can be challenging to maintain current telephone 
numbers.47,48  

Data	
  Pooling	
  and	
  Networking	
  
A major challenge in health research is studying rare outcomes, particularly in association with 
common exposures.  Two methods that can be used to address this challenge are data pooling 
and networking.  Data pooling is combining data, at the level of the unit of analysis (i.e., 
individual), from several sources into a single cohort for analysis.  Pooled data may also include 
data from un-analyzed and un-published investigations, helping to minimize the potential for 
publication bias.  However, pooled analyses require close coordination and can be very difficult 
to complete due to differences in study methodology and collection practices.  An example is an 
analysis that pooled primary data from four cohorts of breast cancer survivors to ask a new 
question about the effectiveness of physical activity.  The researchers had to assure the 
comparability of the definitions of physical activity and its intensity in each cohort.49  Another 
example is a study that pooled data from four different data systems including from Medicare, 
Medicaid, and a private insurer to assess the comparative safety of biological products in 
rheumatologic diseases.  The authors describe their assessment of the comparability of covariates 
across the data systems.50  Researchers must be sensitive to whether additional informed consent 
of individuals is needed for using their data in combination with other data.  Furthermore, 
privacy concerns sometimes do not allow for the actual combination of raw study data.51  
 
An alternative to data pooling is data networking, sometimes referred to as virtual data networks 
or distributed research networks.  These networks have become possible as technology has 
developed to allow more sophisticated linkages.  In this situation, common protocols, data 
definitions, and programming are developed for several data resources.  The results of these 
analyses are combined in a central location, but individual study data do not leave the original 
data resource site.  The advantage of this is that data security concerns may be fewer.  As with 
data pooling, the differences in definitions and use of terminology requires that there be careful 
adjudication before the data is combined for analyses.  Examples of data networking are the 
HMO Research Network and FDA’s Sentinel Initiative. 52,53,54 
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The advantage of these methods is the ability to create large datasets to study rare exposures and 
outcomes.  Data pooling can be preferable to meta-analyses that combine the results of published 
studies because unified guidelines for inclusion criteria, exposures, and outcomes can be 
developed, and analyses using individual patient level data allow for adjustment for differences 
across datasets.  Often, creation and maintenance of these datasets can be time consuming and 
expensive, and they generally require extensive administrative and scientific negotiation, but 
they can be a rich resource for CER. 

Personal	
  Health	
  Records	
  
Although they are not presently used for research to a significant extent, an alternative to 
electronic medical records are personal health records (PHRs).  PHRs are, typically, 
electronically-stored health records that are initiated by the patient.  The patient enters data about 
his or her healthcare encounters, test results, and, potentially, responses to surveys or 
documentation of medication use.  Many of these electronic formats are web-based and therefore 
easily accessible by the patient when receiving healthcare in diverse settings.  The application 
that is used by the patient may be one for which he or she has purchased access, or it may be 
sponsored by the healthcare setting or insurer with which the patient has contact.  Other PHRs, 
such as HealthVault and NoMoreClipboard, can be accessed freely. One example of a widely 
used PHR is MyHealtheVet, which is the personal health record provided by the VA to the 
veterans who use their healthcare system.55  MyHealtheVet is an integrated system in which the 
patient-entered data are combined with the EHR and with health management tools.   
 
While there is ongoing research about how to best improve patient outcomes through the creative 
use of personal health records, there is also interest about how to best use the rich data contained 
within the personal health records for research.  Outstanding issues remain regarding data 
ownership, but there is consensus that the data entered in the personal health record belongs to 
the patient and cannot be accessed without patient consent, which may include explicit 
documentation of the level of data-sharing that the patient would permit, at the time of entering 
data into the record.  Many PHRs request that the patient state to whom he or she grants 
permission to access portions of the data.  
 
Work is underway to standardize data collection across PHRs through the use of common 
terminologies such as the SNOMED CT (Systematized Nomenclature of Medicine -- Clinical 
Terms) system.  Presently, the National Library of Medicine (NLM) PHR project is validating 
and improving the NLM’s clinical vocabularies and studying consumers’ use of PHR systems.  
In 2010, the NLM researchers reviewed and enhanced the controlled vocabulary for more than 
2,000 condition names and synonyms and more than 300 surgery procedure names by enriching 
the synonymy, providing the consumer-friendly name when feasible, and adding SNOMED 
codes, when available, to these items.56  

Patient	
  Reported	
  Outcomes	
  
Patient-reported outcomes (PROs) may occasionally be available in paper-based records and 
EHRs, but they are not presently found in administrative data.  Wu et al. described several 
strategies that could be employed to increase the availability of PROs in administrative data.57  
The first is to encourage routine collection of PROs in clinical care by requiring it for 
compliance with data quality assurance guidelines.  The Hospital Consumer Assessment of 
Healthcare Providers and Systems (HCAHPS) survey administered by CMS assesses patient’s 
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perspectives on their hospital care and could be a required activity.  Another strategy, as 
described by Wu et al., is the required participation of all Medicare managed care plans with 
Medicare Advantage contracts in the Medicare Health Outcomes Survey, which collects data 
similar to that in the SF-12 Short-Form Health Survey.  A third example may be provider 
reimbursement for collecting symptom-related outcome data, and thus its required reporting in 
administrative data.  None of these approaches are currently widely used.  Creative interventions 
to increase the availability of PROs in administrative data, ideally collected with validated tools 
and instruments, would be valuable to CER.  Primary data collection of PRO information 
remains the most common means of ensuring required PRO data is available on the patient 
population of interest at the required time points and of adequate completeness in order to 
conduct CER. 

Conclusion	
  
The choice of study data needs to be driven by the research question.  Not all research questions 
can be answered with existing data and will thus require primary data collection.  For questions 
that are amenable to the use of secondary data, observational research with existing data can be 
efficient and powerful.  Investigators have a growing number of options from which to choose 
when looking for appropriate data, from clinical data to claims data to existing trial or cohort 
data.  Each option has strengths and limitations, and the researcher is urged to make a careful 
match.  In the end, the validity of the study is only as good as the quality of the data. 
 
 
Disclaimer: 
The views expressed are the authors' and not necessarily those of the Food and Drug 
Administration.   
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Data	
  Source	
  Selection	
  for	
  a	
  CER	
  Protocol	
  or	
  Proposal	
  
 

Guidance Key Considerations Check 
Propose data source(s) that 
include data required to 
address primary and secondary 
research questions 

- Ensure that data resource is appropriate for addressing the study question 
- Ensure that key variables needed to conduct the study are available in the data source  

Describe details of data 
source(s) selected for the study 

-­‐ Nature of the data (claims, paper, or electronic medical records; if prospective, how 
is/was the information collected and from whom)  

-­‐ Coding system(s) that may be used (e.g., ICD9 or ICD10; HCPCS; etc.) 
-­‐ Population included in the data source (ages, geography, etc.) 
-­‐ Other features (e.g., health plan membership, retention rate [i.e.,  average duration of 

followup for members in the database, proportion of patients with followup sufficiently 
long for the study purpose]) 

-­‐ Time period covered by the data source(s) 
-­‐ If non-US, describe relevant differences in healthcare and how this will affect results 

 

Describe validation or other 
quality assessments that have 
been conducted on the data 
source that are relevant to the 
data elements required for the 
study 

-­‐ If validation/quality assessments have not previously been performed, propose a 
method to assess data quality  

 

Describe what patient 
identifiers are necessary for the 
research purpose, how they 
will be protected, and 
permissions/waivers required 

 

 

Provide details on data linkage 
approach, and the 
quality/accuracy of linkage, if 
applicable  

-­‐ Provide enough detail to clarify the quality of the linkage approach 
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Chapter	
  9.	
  Study	
  Size	
  Planning	
  	
  

Abstract	
  
The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist 
asks investigators to report their rationale for the study size, which may include a statistical 
power calculation.  However, such a rationale is often missing from study proposals and 
protocols.  This is problematic when investigators or journal reviewers interpret the findings in 
terms of their statistical significance in relation to the null hypothesis, which implies both a 
hypothesis and adequate statistical power (e.g., ≥0.80 for a clinically important increase in 
harm).  Without a rationale for the study size, readers may be falsely reassured by the lack of a 
statistically significant harm for the comparison of two interventions; readers would be better 
served by appreciating the level of precision revealed by the confidence interval.  

Introduction	
  
An important aspect of assessing study feasibility is whether the projected number of accrued 
patients is adequate to reasonably address the scientific aims of the study.  Many journals have 
endorsed reporting standards that ask investigators to report the rationale for the study size.  For 
example, the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 
checklist asks investigators to report their rationale, which may include a statistical power 
calculation.  However, such a rationale is often missing from study proposals and protocols.  
This is problematic when investigators interpret study findings in terms of the statistical 
significance in relation to the null hypothesis, which implies both a pre-specified hypothesis and 
adequate statistical power (e.g., ≥80% for detecting a clinically important increase in harm).  
Without the context of a numeric rationale for the study size, readers may misinterpret the lack 
of a statistically significant difference in effect as false reassurance of lack of harm, or falsely 
conclude that there is no benefit when comparing two interventions. 

Study	
  Size	
  and	
  Power	
  Calculations	
  in	
  RCTs	
  
The study planning needed to achieve various study sizes, and an understanding of statistical 
power that a given study size can yield, are important aspects in the design of randomized 
controlled trials (RCTs).  Reporting on the rationale underlying the size of treatment arms is 
clearly specified in the Consolidated Standards of Reporting Trials (CONSORT) and 
STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) reporting 
guidelines, and internal review boards (IRBs) often require such statements in a study protocol 
before data collection can begin.1  The rationale for study size in an RCT usually depends on 
calculations of the study size needed to achieve a specified level of statistical power for the 
primary hypothesis under study, defined as the probability of rejecting the null hypothesis when 
an alternative hypothesis is true.  In the case of a trial comparing treatments, this is the 
probability of finding a statistically significant difference between treatments in the primary 
outcome if the treatments do indeed differ.  Several software packages and online tools exist for 
performing these calculations, and textbooks give more detail on the calculations for a wide 
variety of data structures and statistical models. 
 
Calculating statistical power requires specification of several investigator choices and 
assumptions, each of which has important implications and must be specified with sufficient 
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scientific rationale.  Most importantly, investigators must specify a primary study outcome and a 
minimum treatment effect of interest for that outcome.  This quantity, often referred to as the 
clinically meaningful or minimum detectable difference, identifies the size of the smallest 
potential treatment effect that would be of clinical relevance.  Study size is calculated assuming 
that value represents the true treatment effect.  If the true treatment effect is larger than this 
quantity, then the power for a given study size will be even higher than originally calculated.   
 
In addition to the minimum treatment effect of interest, calculating the needed study size requires 
specifying a measure of data variability.  In trials with a continuous outcome (e.g., LDL 
cholesterol), investigators must make assumptions about the standard deviation of the outcome in 
each trial arm; when outcome is the occurrence of an event (e.g., death), then an assumed event 
rate in the control group is necessary.  If the assumed event rate in the control group is combined 
with the specified treatment effect of interest, then one can calculate the expected event rate in 
each group if the minimum clinically important treatment effect is achieved.  The CONSORT 
statement recommends reporting these quantities (the expected results in each group under the 
minimum detectable difference), rather than the minimum detectable difference.  It is 
recommended that estimates of standard deviations and event rates used in study size 
calculations be taken from existing literature or pilot studies when available.   
 
Finally, needed study size depends on the chosen Type I error rate (α) and the required statistical 
power.  For the majority of studies, the conventional cutoff for statistical significance, α = 0.05, 
is almost always used, but this quantity should be clearly specified nonetheless.  Many studies 
also use a standard required power of 80 percent, although other values are often considered.  In 
RCTs that have study size constraints, due to budget or the pool of available patients, the power 
for the achievable study size should be reported.  Potential reductions in the number of recruited 
patients available for analysis (e.g., due to loss to followup) should also be discussed.   
 
Table 9.1 shows an example of an adequately reported consideration of study size under several 
potential scenarios that vary the baseline risk of the outcome, the minimum clinically relevant 
treatment effect, and the required power.  In this table, all of the necessary quantities are reported 
for determining the adequacy of the chosen study size, and investigators, funding agencies, and 
ethics review boards can make informed decisions about the potential utility of the planned 
study. 
 
Table 9.1.  Example study size table for an RCT comparing the risk of death for two 
alternative therapies*   

Scenario Effect of 
Interest 

Therapy 
1 Risk 

Therapy 
2 Risk 

Desired 
Power 

Needed 
study size 

Needed 
recruitment 

1 0.75 0.020 0.015 80% 10,795 13, 494 
2 0.75 0.100 0.075 80% 2,005 2,507 
3 0.50 0.100 0.050 80% 435 544 
4 0.05 0.100 0.050 90% 592 728 
*All calculations assume a Type I error rate of 0.05. The effect of interest is specified as a risk ratio. Study size is 
reported per treatment arm, and a 20% dropout rate is assumed for calculating the needed recruitment. 
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These considerations in sample size and power in the context of RCTs are also relevant for non-
randomized studies, but their application in non-randomized studies may differ.  The following 
section is for additional consideration, particularly for non-randomized studies. 

Considerations	
  for	
  Observational	
  CER	
  Study	
  Size	
  Planning	
  
Bland has commented that funding agencies and journals put investigators in an inconsistent 
position: Funding agencies ask for statistical power calculations to test one hypothesis for the 
primary outcome, yet journals ask for confidence intervals.2  In his commentary, Bland proposed 
that we resolve that inconsistency by asking investigators to base their study size on the expected 
precision of all relevant comparisons.  Goodman and Berlin recommended a similar idea in 1994 
(page 204 of their article):3 
 

“In our experience, expressing the implications of sample size calculations in the same 
language as is used in a published paper, instead of the language of power and 
detectable differences, helps researchers to understand the implications more clearly 
and take them more seriously. This in turn, can produce meaningful discussions about 
the aims of the study, which power considerations rarely seem to inspire.”  

 
Basing the study size on the expected width of confidence intervals offers another advantage: 
Investigators no longer need to commit to a primary outcome and a primary comparison (e.g., 
among alternative interventions). 
 
Many funding agencies, however, rely on the conventional power calculations advocated by 
most trialists.  Therefore, this section primarily focuses on power calculations and adapts 
trialists’ conventional advice to non-randomized or observational studies because they introduce 
complexities that randomized trials do not need to consider.  For example, investigators may not 
be able to estimate the power or precision of their proposed comparisons until they have 
generated the propensity score and constructed matched cohorts, which may exclude patients and 
interventions that appeared eligible when the cohort was assembled.  

Case	
  study	
  
Schneeweiss and colleagues published one of the first DEcIDE-program studies on comparative 
effectiveness; they compared the short-term risk of mortality in elderly patients who started a 
conventional versus an atypical antipsychotic medication4, reproducing an earlier study by Wang 
and colleagues.5  Consistent with most nonexperimental studies, especially in the pre-STROBE 
era, their methods section does not offer a rationale for the cohort study’s size.  Based on their 
patient counts for each class of antipsychotic medication and the number of deaths observed 
during the first 180 days after starting medication, we calculated the statistical power for their 
study question: 
 

• Do conventional antipsychotic medications pose a higher risk than atypical antipsychotic 
medications as measured by all-cause mortality? 

 
We considered an inferiority hypothesis by using the crude mortality risk observed in the control 
cohort of atypical medication patients (9.58 percent), and then assigning the conventional 
medication cohort a 10 percent higher risk (10.54 percent), a clinically important excess.  Based 
on the numbers of patients and deaths noted above, Stata’s sample size command, sampsi, 
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reported statistical power of 0.83.  Their subgroup analyses would have revealed lower power, 
but the main study was appropriately powered for its primary outcome and comparison. 

Considerations	
  that	
  differ	
  for	
  non-­‐randomized	
  studies	
  
Power calculations may require additional considerations for application to non-randomized 
studies.  For a well-planned and conducted randomized controlled trial, the type I and type II 
errors rank higher as possible explanations (i.e., false positive or false negative) for a finding of 
“no statistically significant difference” because randomization has overcome the potential 
confounding, the protocol has reduced measurement error, etc.  But for non-randomized studies, 
type I and type II errors rank lower on the list of possible explanations for such a negative result.  
Confounding bias, measurement error, and other biases should concern investigators more than 
the expected precision when they consider the feasibility of a comparative effectiveness study.  
For example, the new user design trades precision for a reduction in confounding bias by 
restricting the study to incident users of the interventions under study (see chapter 2 for a 
discussion of new user design).6  As retrospective database studies become larger through 
distributed networks, the expected precision of comparative effectiveness estimates will diminish 
in importance as a competing explanation for negative results - at least for the primary 
comparison of common interventions - and readers will need to consider whether small observed 
clinical differences matter for decision making.  For example, database studies may identify 
small excess risks of ~5 percent that would fall below the minimum clinically important 
difference specified in a prospective study.  
 
In some cases, controlling for confounding can also reduce the precision of estimated effects.  
The reduction in precision is perhaps most clearly seen in studies that use propensity score 
matching.  With propensity score matching and strong preferential prescribing in relation to 
patient characteristics (i.e., less overlap in propensity score distributions across cohorts), many 
patients will drop out of the analysis.7  For example, Solomon and colleagues identified a cohort 
of 23,647 patients who were eligible for a comparative effectiveness study, but only 12,840 (54 
percent) contributed to the final analysis after matching on the propensity score.8  
Inconveniently, the development of the propensity score occurs after the study protocol has been 
written and the investigators have invested considerable time and effort toward completion of the 
comparative effectiveness study.  Consequently, investigators should consider incorporating 
sensitivity analyses when calculating the expected precision of effects and study size estimates.  
For example, if 25 percent of the cohort were to drop out of the analysis after incorporating the 
propensity score, how would that reduced study size impact the expected precision? 
 
Because retrospective studies lack a protocol for data collection, they often suffer a higher 
frequency of missing data, especially for clinical examination values (e.g., blood pressure, body 
mass index, and laboratory results).  Investigators who undertake a completed-cases analysis, 
which excludes patients with any missing data for key variables, may suffer from a smaller study 
size than they anticipated when they wrote the study protocol.9  Depending on the nature of the 
missingness, it may be possible for investigators to impute certain values and retain patients in 
the final analysis.  But as with the development of propensity scores, multiple imputation is 
labor-intensive and its success in retaining patients will only be known after the protocol has 
been written. 
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Conclusion	
  
In order to ensure adequate study size and appropriate interpretation of results, investigators 
should provide a rationale for study size during the planning and reporting stages of an 
observational CER study.  All definitions and assumptions should be specified, including the 
primary study outcome, clinically important minimum effect size, variability measure, and type I 
and type II error rates.  Investigators should also consider other cases whereby the sample size 
may be reduced, such as loss to followup, reductions due to statistical methods to control 
confounding, and missing data concerns to ensure that the sample size necessary to detect a 
clinically meaningful difference is achieved. 
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Study	
  Size	
  Planning	
  in	
  CER	
  Protocols	
  and	
  Proposals	
  	
  
 

Guidance Key Considerations Check 

Describe all relevant assumptions and 
decisions 

Report: 
- The primary outcome on which the study size or power estimate is based 
- The clinically important minimum effect size (e.g., hazard ratio ≥1.20) 
- The type I error level 
- The statistical power or type II error level (for study size calculations) or the 

assumed sample size (for power calculations) 
- The details of the sample size formulas and calculations including correction for 

loss to followup, treatment discontinuation, and other forms of censoring. Report 
the expected absolute risk or rate for the reference or control cohort, including 
the expected number of events 

 

Specify the type of hypothesis, the 
clinically important inferiority margin or 
minimum clinically important 
excess/difference, and the level of 
confidence for the interval (e.g., 95%) 

- Types of hypotheses include equivalence, non-inferiority, inferiority 

 

Specify the statistical software and 
command or the formula t to calculate 
the expected confidence interval 

- Examples include Stata, Confidence Interval Analysis, Power Analysis and 
Sample Size (PASS)  

Specify the expected precision (or 
statistical power) for any planned 
subgroup analyses 

 
 

Specify the expected precision (or 
statistical power) as sensitivity analyses 
in special situations 

Special situations include: 
- The investigators anticipate strong confounding that will eliminate many patients 

from the analysis (e.g., when matching or trimming on propensity scores) 
- The investigators anticipate a high frequency of missing data that cannot (or will 

not) be imputed, which would eliminate many patients from the analysis 
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Chapter	
  10.	
  Considerations	
  for	
  Statistical	
  Analysis	
  	
  

Abstract	
   	
  
This chapter provides a high level overview of statistical analysis considerations for 
observational comparative effectiveness research (CER).  Descriptive and univariate analyses 
can be used to assess imbalances between treatment groups and identify covariates associated 
with exposure and/or the study outcome.  Traditional strategies to adjust for confounding during 
the analysis include linear and logistic multivariable regression models.  The appropriate analytic 
technique is dictated by the characteristics of the study outcome, exposure of interest, study 
covariates, and the underlying assumptions underlying the statistical model.  Increasingly 
common in CER is the use of propensity scores, which assign a probability of receiving 
treatment conditional on observed covariates.  Propensity scores are appropriate when adjusting 
for large numbers of covariates and are particularly favorable in studies having a common 
exposure and rare outcome(s).  Disease risk scores estimate the probability or rate of disease 
occurrence as a function of the covariates and are preferred in studies with a common outcome 
and rare exposure(s).  Instrumental variables, which are measures that are causally related to 
exposure but only affect the outcome through the treatment, offer an alternative to analytic 
strategies that have incomplete information on potential unmeasured confounders.  Missing data 
in CER studies is not uncommon and it is important to characterize the patterns of missingness in 
order to account for missing data in the analysis.  In addition, time-varying exposures and 
covariates should be accounted for to avoid bias. The chapter concludes with a checklist 
including guidance and key considerations for developing a statistical analysis section of an 
observational CER protocol or proposal. 

Introduction	
  
Comparative effectiveness research utilizing observational data requires careful and often 
complex analytic strategies to adjust for confounding.  This can include standard analytic 
strategies, such as traditional multivariable regression techniques, as well as newer, more 
sophisticated methodologies, such as propensity score matching and instrumental variable 
analysis.  This chapter covers data analysis strategies from simple descriptive statistics to more 
complex methodologies.  Also covered are important considerations such as handling missing 
data and analyzing time-varying exposures and covariates.   
 
While this chapter provides a high level summary of considerations and issues for statistical 
analysis in observational CER, it is not intended to be a comprehensive treatment of 
considerations and approaches.  We encourage the reader to explore topics more fully by 
referring to the references provided. 

Descriptive	
  Statistics/Unadjusted	
  Analyses	
  
Appropriate descriptive statistics and graphical displays for different types of data have been 
presented in numerous textbooks.1  This includes measures of range, dispersion, and central 
tendency for continuous variables, n and percent for categorical variables, and plots for 
evaluating data distributions.  For comparative effectiveness research (CER), it is important to 
consider useful and informative applications of these descriptive statistics.  For instance, for a 
cohort study, describing study covariates stratified by exposure levels provides a useful means to 
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assess imbalances in these measures.  For a propensity matched-pairs dataset, summarizing study 
covariates by exposure group aids in detecting residual imbalances.   
 
Univariate or unadjusted hypothesis testing, such as two-sample t-tests, can be conducted to 
identify covariates associated with the exposure and/or the study outcome.  Since CER studies 
will need to consider potential confounding from a large number of study covariates, the 
descriptive statistics should provide a broad picture of the characteristics of the study subjects.   

Adjusted	
  Analyses	
  

Traditional	
  Multivariable	
  Regression	
  
Regression analysis is often used to control for potential confounding variables in the estimation 
of treatment effects.2  In general, control is made for pre-treatment variables that are related to 
both the treatment of interest and the outcome of interest.  Variables that are potentially on the 
pathway from treatment to outcome are not controlled for as control for such intermediate 
variables could block some of the effect of the treatment on the outcome.  See chapter 7 for 
further discussion.  Traditional multiple regression, in which one uses regression models to 
directly adjust for potential confounders and effect modification, has long been used in 
observational studies and can be applied in CER.  When applying regression modeling, careful 
attention must be paid to ensure corresponding model assumptions are met.3  For instance, for 
logistic regression, as long as the number of outcome events per covariate included in the 
regression model is sufficient (e.g., rule of thumb is 10 or more) and the exposure of interest is 
not infrequent, traditional multiple regression is a reasonable strategy and could be considered 
the primary analysis.4,5  However, when this is not the situation, other options should be 
considered.  
 
When there are many covariates, one approach has been to develop more parsimonious models 
using methods such as stepwise regression.  However, this may involve subjective decisions such 
as the type of variable selection procedure, whether to base selection upon p-values or change in 
exposure parameter estimates, and numeric cutoffs (e.g., p=0.05, 0.10, 0.20) for variable 
inclusion and retention in the model.  For covariates that confer relatively modest increases in 
disease risk, some variable selection procedures, such as stepwise regression, may exclude 
important covariates from the final model.   
 
Furthermore, stepwise regression has limitations that can lead to underestimation of standard 
errors for exposure estimates.6  Other analytical strategies which have become more common in 
recent years include using summary variables, such as propensity scores and disease risk scores, 
which are described below.  Propensity scores often perform better than logistic regression when 
the outcome is relatively rare (e.g., fewer than 10 events per covariate as noted above), whereas 
logistic regression tends to perform better than propensity score analysis when the outcome is 
common but the exposure is rare.7 

Choice	
  of	
  Regression	
  Modeling	
  Approach	
  
The forms of the study outcome, exposure of interest, and study covariates will determine the 
regression model to be used.  For independent, non-time-varying exposures and study covariates, 
generalized linear models (GLM’s) such as linear or logistic regression can be used.  If the study 
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outcome is binary with fixed followup and is rare, Poisson regression with robust standard errors 
can be used to estimate relative risks and get correct confidence intervals.8,9   
 
In CER studies in which data are correlated, regression models should be specified that take this 
correlation into account.  Examples of correlated data include repeated measures on study 
subjects over time, patients selected within hospitals across many hospitals, and matched study 
designs.  There are a number of analysis options that can be considered, which depend on the 
study question and particulars of the study design.  Repeated measures per study subject can be 
collapsed to a single summary measure per subject.  Generalized estimating equations (GEE) are 
a frequently-used approach to account for correlated data.  Random effects models are another 
suitable analytical approach to handle repeated measures data.  Approaches for such longitudinal 
data are described in detail in a number of textbooks.10,11  For matched study designs (e.g., case-
controlled designs), models such as conditional logistic regression may be considered. 
 
Time-to-event data with variable follow-up and censoring of study outcomes are commonly 
investigated in CER studies.  Cox proportional hazards regression is a common methodology for 
such studies.  In particular, this approach can easily handle exposures and study covariates whose 
values vary over time as described in detail below.  When time-varying covariates are affected 
by time-varying treatment, marginal structural models (described below) may be required.  A 
number of excellent textbooks describe analyzing time-to-event data.12,13 

 

A high-level overview of modeling approaches in relation to the nature of the outcome measure 
and followup assessments is shown in Table 10.1.   
 
Table 10.1. Summary of Modeling Approaches as a Function of Structure of Outcome 
Measure and Followup Assessments 
 

 Number of follow-up measures and time intervals 
 Single measure Repeated measure, 

fixed intervals 
Repeated 
measure, variable 
intervals 

Outcome 
measure 

No clustering Clustering (e.g., multi-
site study) 

  

Dichotomous Logistic 
regression 

Multilevel  
(mixed) logistic 
regression, 
GLMM, GEE, 
conditional logistic 
regression 

Repeated measures 
ANOVA (MANOVA), 
GLMM, GEE 

GLMM, GEE 

Continuous Linear regression Multilevel (mixed) linear 
regression, GLMM, GEE 

Repeated measures 
ANOVA (MANOVA), 
GLMM, GEE 
 

GLMM, GEE 

Time to event Cox proportional 
hazards regression 

Variance-adjusted Cox 
model or shared frailty 
model 

  



                         Chapter 10. Considerations for Statistical Analysis 

170 
 

 Number of follow-up measures and time intervals 
Time to event 
(aggregate or 
count data) 

Poisson regression Multilevel (mixed) 
Poisson regression 

  

NOTE: This high level summary provides suggestions for selection of a regression modeling approach based on 
consideration of the outcome measure and nature of the followup measures or assessments. Many of these methods 
allow time-varying exposures and covariates to be incorporated in the model. Time-varying confounding may 
require use of IPTW/marginal structural model techniques. 

Model	
  Assumptions	
  
All analytic techniques, including regression, have underlying assumptions.  It is important to be 
aware of those assumptions and to assess them.  Otherwise, there are risks with regards to 
interpretation of study findings.  These assumptions and diagnostics are specific to the regression 
technique being used and will not be listed here.  These are covered in numerous textbooks 
depending on the methods being used.  For example, if Cox proportional hazards regression is 
used, then the proportional hazards assumption should be assessed.  If this assumption is 
questionable, then alternatives, such as time-dependent covariates, may need to be considered. 

Propensity	
  Scores	
  
Propensity scores are an increasingly common analytic strategy for adjusting for large numbers 
of covariates in CER.  The use of the propensity score for confounding control was proposed by 
Rosenbaum and Rubin.14  The propensity score is defined as the probability of receiving 
treatment (or exposure) conditional on observed covariates and is typically estimated from 
regression models, such as a logistic regression of the treatment conditional on the covariates.  
Rosenbaum and Rubin showed that if adjustment for the original set of covariates suffices to 
control for confounding then adjustment for just the propensity score also would suffice as well.  
This strategy is particularly favorable in studies having a common exposure and rare outcome or 
possibly multiple outcomes.7  Propensity scores can be used in sub-classification or 
stratification,15 matching,16 and weighting,17 and further adjustment can be done using regression 
adjustment.18  Stürmer and colleagues provide a review of the application of propensity scores.19   
 
If adjustment using the propensity score is used, balance in study covariates between exposure 
groups should be carefully assessed.  This can include, but is not limited to, testing for 
differences in study covariates by exposure group after adjusting for propensity score.  Another 
common assessment of the propensity score is to visually examine the propensity score 
distributions across exposure groups.  It has been demonstrated that if there is poor overlap in 
these distributions, there is a risk of biased exposure estimates when adjusting for the propensity 
score in a regression model.20  One remedy for this is to restrict the cohort to subjects whose 
propensity score overlaps across all exposure groups.21,22 
 
Matching on propensity score offers several advantages when feasible.  Matching subjects across 
exposure groups on propensity score ensures, through restriction, that there will be good overlap 
in the propensity score distributions.  In addition, summarizing subject characteristics by 
exposure groups in a propensity-matched design is akin to summarizing subject characteristics in 
a clinical trial to assessing balance in study covariates.  However, in a propensity-matched 
design, one can only ensure that measured covariates are being balanced.  The consequences of 
unmeasured confounding can be assessed using sensitivity analysis.  See chapter 11 for further 
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details.  Matching techniques for causal effects are described in detail in Rubin23 and best 
practices for constructing a matched control group are provided by Stuart and Rubin.24  Care 
must be taken when estimating standard errors for causal effects when using matching,25,26 
though software is now available that makes this task easier.27 
 
A trade-off between using regression adjustment on the full cohort and a propensity-matched 
design is that in the former there still may be imbalances in study covariates and in the latter 
sample size may be reduced to the extent that some of subjects are unable to be matched.  
Connors and colleagues28 used both analytic strategies in a cohort study of the effectiveness of 
right heart catheterization and reported similar findings from both analyses.  Use of multiple 
analytic strategies as a form of sensitivity analysis may serve as a useful approach drawing from 
the strengths of both strategies. 
 
Brookhart and colleagues29 investigated variable selection approaches and recommend that 
covariates to be included in the propensity score model either be true confounders or at least 
related to the outcome; including covariates related only to the exposure, which increase the 
variance of the exposure estimate. 

Disease	
  Risk	
  Scores	
  
The disease risk score (DRS) is an alternative approach to the propensity score.30,31  Like the 
propensity score, it is a summary measure derived from the observed values of the covariates.  
However, the DRS estimates the probability or rate of disease occurrence as a function of the 
covariates.  The DRS may be estimated in two ways.  First, it can be calculated as a "full-cohort" 
DRS, which is the multivariate confounder score originally proposed by Miettinen (1976).32  
This score was constructed from a regression model relating the study outcome to the exposure 
of interest and the covariates for the entire study population.  The score was then computed as 
the fitted value from that regression model for each study subject, setting the exposure status to 
non-exposure.  The subjects were then grouped into strata according to the score and a stratified 
estimate of the exposure effect was calculated.  The DRS also may be estimated as an 
"unexposed-only" DRS, from a regression model fit only for the unexposed population, with the 
fitted values then computed for the entire cohort. 
 
The DRS is particularly favorable in studies having a common outcome and rare exposure or 
possibly multiple exposures.  The DRS is useful for summarizing disease risk and assessing 
effect modification by disease risk.  Ray and colleagues33 reported effect modification by 
cardiovascular disease risk, derived and summarized using DRS, in a study of antipsychotics and 
sudden cardiac death.  Also, in the presence of a multilevel exposure in which some of the levels 
are infrequent, the DRS may be a good alternative to propensity scores. 

Instrumental	
  Variables	
  
A limitation of study designs and analytic strategies, including traditional multiple regression, 
propensity scores, and disease risk scores in CER studies, is incomplete information on potential 
unmeasured confounders.  An alternative approach to estimate causal effects, other than 
confounding/covariate control, is the use of instrumental variables.34  An “instrument” is a 
measure that is causally related to exposure but only affects the outcome through the treatment 
and is also unrelated to the confounders of the treatment-outcome relationship.  With an 
instrument, even if there is unmeasured confounding of the treatment-outcome relationship, the 
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effect of the instrument on the treatment, and the effect of the instrument on the outcome can 
together be used to essentially back out the effect of the treatment on the outcome.  A difficulty 
of this approach is identifying a high-quality instrument. 
 
An instrument must be unrelated to the confounders of the treatment and the outcome; otherwise 
instrumental variable analyses can result in biases.  An instrument must also not affect the 
outcome except through the treatment.  This assumption is generally referred to as the ‘exclusion 
restriction.’  Violations of this exclusion restriction can likewise result in biases.  Finally, the 
instrument must be related to the treatment of interest.  If the association between the instrument 
and the treatment is weak, the instrument is referred to as a ‘weak instrument.’  Finite-sample 
properties of estimators using weak instruments are often poor, and weak instruments moreover 
tend to amplify any other biases that may be present.35,36,37,38 
 
Two-stage least squares techniques are often employed when using instrumental variables, 
though with a binary treatment, ratio estimators are also common.34  For estimates to be causally 
interpretable, often a monotonicity assumption must also be imposed that the effect of instrument 
on the treatment only operates in one direction (e.g., it is causative or neutral for all individuals).  
Assumptions of homogeneous treatment effects across individuals are also an assumption that is 
commonly employed to obtain causally interpretable estimates.  When homogeneity assumptions 
are not employed, the resulting causal effect estimate is generally only applicable for certain 
subpopulations consisting of those individuals for whom the instrument is able to change the 
treatment status.34  Such effects are sometimes referred to as “local average treatment effects”.  
When the treatment is not binary, interpretation of the relevant subpopulation becomes more 
complex.39  Moreover, when two-stage least squares procedures are applied to binary rather than 
continuous outcomes, other statistical biases can arise.40 
  
Brookhart and colleagues41 applied this approach in a study of COX-2 inhibitors with 
nonselective, nonsteroidal antiinflammatory drugs (NSAIDs) on gastrointestinal complications.  
Their instrument was the prescribing physician’s preference for a COX-2 inhibitor relative to an 
NSAID.  The results of the instrumental variable analysis were statistically similar to results 
from two clinical trials, which was contrary to the traditional multiple regression analysis that 
was also conducted. 
 
Schneeweiss and colleagues42 examined aprotinin during coronary-artery bypass grafting 
(CABG) and risk of death in which their primary analysis was a traditional multiple regression.  
In addition to the primary analysis, they also conducted a propensity score matched-pairs 
analysis as well as an instrumental variable analysis.  All three analyses had similar findings.  
This methodology of employing more than one analytical approach may be worth consideration 
since the propensity score matching does not rely on the exclusion restriction and other 
instrumental variable assumptions, whereas instrumental variable analysis circumvents the biases 
introduced by unmeasured confounders, provided a good instrument is identified.  When results 
differ, careful attention needs to be given to what set of assumptions are more plausible. 

Missing	
  Data	
  Considerations	
  
It is not uncommon to have missing data in CER.  The extent of missing data and its potential 
impact on the analysis needs to be considered.  Before proceeding with the primary analyses, it is 
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important to characterize the patterns of missingness using exploratory data analyses.  This can 
provide insights into how to handle the missing data in the primary analysis. 
 
For the primary analysis, a common analytical approach is to just analyze those subjects who 
have no missing data, called a complete-case analysis.  However, an initial limitation with this is 
that sample size is reduced, which affects efficiency even if data are missing completely at 
random.  If subjects with missing data differ from subjects with complete data, then exposure 
estimates may be biased.  For example, suppose blood pressure is a potential confounder, and it 
is missing in very ill subjects.  Then excluding these subjects can bias the exposure estimate. 
 
Little and Rubin’s textbook describes several analytic approaches for handling missing data.43  
One common approach to filling in missing data when they are “missing completely at random” 
or “missing at random” is imputation, which they describe in detail.  In chapter 3 of Harrell’s 
textbook, he describes missing data and imputation and also provides some guidelines for 
handling such data.44  Inverse probability weighting techniques, described below, can also be 
employed to address issues of missing data. 

Time-­‐Varying	
  Exposures/Covariates	
  
In most CER studies, it is unrealistic to assume that exposures and covariates remain fixed 
throughout followup.  Consider, for example, HIV patients who may be treated by anti-retroviral 
therapy.  The use of anti-retroviral therapy may change over time and decisions about therapy 
may in part be based on CD4 count levels, which also vary over time.  As another illustration, 
consider a study of whether or not proton pump inhibitors (PPIs) prevent clopidogrel-related 
gastroduodenal bleeding, and warfarin may be started during followup.  Should one adjust for 
this important potential confounder?  Failure to account for the time-varying status of such 
exposures and confounders (i.e., fix everyone’s exposure status at baseline) may severely bias 
study findings.   
 
As noted above, for time-to-event study outcomes, time-dependent Cox regression models can be 
used to account for time-varying exposures and covariates.  However, difficult issues arise when 
both the treatment and confounding variables vary over time.  In the HIV example, CD4 count 
may be affected by prior therapy decisions, but CD4 count levels may themselves go on to alter 
subsequent therapy decisions and the final survival outcome.  In examining the effects of time-
varying treatment, a decision must be made as to whether to control for CD4 count.  A difficulty 
arises in that CD4 count is both a confounding variable (for subsequent therapy and final 
survival) and also an intermediate variable (for the effect of prior treatment).  Thus control for 
CD4 count in a time-varying Cox model could potentially lead to bias because it is an 
intermediate variable and could thus block some of the effect of treatment; but failure to control 
for CD4 count in the model will result in confounding and thus bias for the effect of subsequent 
treatment.  Both analyses are biased.  Such problems arise whenever a variable is simultaneously 
on the pathway from prior treatment and also affects both subsequent treatment and the final 
outcome. 
 
These difficulties can be addressed by using inverse-probability-of-treatment weighting,45 rather 
than regression adjustment, for confounding control.  These inverse-probability-of-treatment 
weighting (IPTW) techniques are used to estimate the parameters of what is often called a 
marginal structural model, which is a model for expected counterfactual outcomes.  The 
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marginal structural model / IPTW approach is essentially a generalization of propensity score 
weighting to the time-varying treatment context.  The IPTW technique assumes that at each 
treatment decision, the effect of treatment on the outcome is unconfounded given the past 
covariate and treatment history.  A similar weighting approach can also be used to account for 
censoring as well.45  This marginal structural model / IPTW approach has been developed for 
binary and continuous outcomes,45 time-to-event outcomes,46 as well as for repeated measures 
data.47   
 
Another consideration for time-varying exposures is accounting for exposure effect (e.g., 
medication use) after the subject stopped receiving that exposure.  One approach is to create 
another exposure level that is a carryover of a biologically plausible number of days after 
exposure use has ended and incorporate it as a time-varying exposure level in the analysis.  
Another approach is an intent-to-treat analysis in which exposure status (e.g., treatment 
initiation) is assumed throughout followup.  Cadarette and colleagues (2008) used this approach 
in a study of fracture risk.48  The motivation was that treatment adherence may be low and 
accounting for on-treatment status may result in information bias.   

Conclusion	
  
This chapter provides a brief overview of statistical methods, and offers suggestions and 
recommendations to address the complex challenges of analyzing data from observational CER 
studies.  Both traditional approaches such as multivariable regression and novel but established 
methods such as propensity scores and instrumental variable approaches may be suitable to 
address specific data structures and under certain assumptions.  Thoughtful application of these 
approaches can help the investigator improve causal inference.   
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Developing	
  a	
  Statistical	
  Analysis	
  Section	
  of	
  an	
  Observational	
  
CER	
  Protocol	
  or	
  Proposal	
  
 
Guidance Key Considerations Check 
Describe the key variables of interest with 
regard to factors that determine appropriate 
statistical analysis 
 

-­‐ Independent variables (when are they measured, fixed or time-varying; 
e.g., exposures, confounders, effect modifiers) 

-­‐ Dependent variables or outcomes (continuous or categorical, single or 
repeated measure, time to event) 

-­‐ State if there will be a “multi-level” analysis (e.g., looking at effects of 
both practice level and patient level characteristics on outcome)	
  

 

Propose descriptive  analysis or graph 
according to treatment group 
 

-­‐ Should include the available numbers per group, n missing for all key 
covariates, distributions or graphs that are needed to decide if 
transformation of data is needed or determine an accurate functional 
form of the final model 

-­‐ Should include all potential confounders and effect modifiers to assess 
initial covariate balance by study group	
  

 

Propose the model that will be used for 
primary and secondary analysis objectives 
 

-­‐ Should take into account the design (independent vs. dependent 
observations, matched, repeated measurement, clustered); objectives, 
functional form of model, fixed/time-varying followup period, fixed 
and time-varying exposure and other covariates, assessment of effect 
modification/heterogeneity, type of outcome variables (categorical, 
ordinal, or continuous), censored data, and the degree of rarity of 
outcome and exposure  

-­‐ Should propose suitable approach for adjusting for confounding (e.g., 
Multiple regression model, propensity scores, IV [could be secondary 
or main analysis])	
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Chapter	
  11.	
  Sensitivity	
  Analysis	
  	
  

Abstract	
  
This chapter provides an overview of study design and analytic assumptions made in 
observational comparative effectiveness research (CER), discusses assumptions that can be 
varied in a sensitivity analysis, and describes ways to implement a sensitivity analysis.  All 
statistical models (and study results) are based on assumptions, and the validity of the inferences 
that can be drawn will often depend on the extent to which these assumptions are met.  The 
recognized assumptions on which a study or model rests can be modified in order to assess the 
sensitivity, or consistency in terms of direction and magnitude, of an observed result to particular 
assumptions.  In observational research, including much of comparative effectiveness research, 
the assumption that there are no unmeasured confounders is routinely made, and violation of this 
assumption may have the potential to invalidate an observed result.  The analyst can also verify 
that study results are not particularly affected by reasonable variations in the definitions of the 
outcome/exposure.  Even studies that are not sensitive to unmeasured confounding (such as 
randomized trials) may be sensitive to the proper specification of the statistical model.  Analyses 
are available that can be used to estimate a study result in the presence of an hypothesized 
unmeasured confounder, which then can be compared to the original analysis to provide 
quantitative assessment of the robustness (how much does the estimate change if we posit the 
existence of a confounder) of the original analysis to violations of the assumption of no 
unmeasured confounders.  Finally, an analyst can examine whether specific sub-populations 
should be addressed in the results since the primary results may not generalize to all sub-
populations if the biologic response or exposure may differ in these subgroups.  The chapter 
concludes with a checklist of key considerations for including sensitivity analyses in a CER 
protocol or proposal. 

Introduction	
  
Observational studies and statistical models rely on assumptions, which can range from how a 
variable is defined or summarized, to how a statistical model is chosen and parameterized.  Often 
these assumptions are reasonable, and, even when violated, may result in unchanged effect 
estimates.  When the results of analyses are consistent or unchanged by testing variations on 
underlying assumptions, they are said to be “robust.”  However, violations in assumptions that 
result in meaningful effect estimate changes provide insight into the validity of the inferences 
that might be drawn from a study.  A study’s underlying assumptions can be altered along a 
number of dimensions, including study definitions (modifying exposure/outcome/confounder 
definitions), study design (changing or augmenting the data source or population under study), 
and modeling (modifying a variable’s functional form or testing normality assumptions), to 
evaluate robustness of results.    
 
This chapter considers the forms of sensitivity analysis that can be included in the analysis of an 
observational comparative effectiveness study, provides examples, and offers recommendations 
about the use of sensitivity analyses.    
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Unmeasured	
  Confounding	
  and	
  Study	
  Definition	
  Assumptions	
  

Unmeasured	
  Confounding	
  
The underlying assumption of all epidemiological studies is that there is no unmeasured 
confounding.  However, some potential confounding variables may not be measured or available 
for analysis: the unmeasured confounding variable could either be a known confounder that is 
not present in the type of data being used (e.g., obesity is commonly not available in prescription 
claims databases) or an unknown confounder where the confounding relation is unsuspected.   
Quantifying the effect that an unmeasured confounding variable would have on study results 
provides an assessment of the sensitivity of the result to violations of the assumption of no 
unmeasured confounding.  The robustness of an association to the presence of a confounder1,2 
can alter inferences that might be drawn from a study, which then might change how the study 
results are used to  influence translation  into clinical or policy decision-making.  Methods for 
assessing the potential impact of unmeasured confounding on study results, as well as quasi-
experimental methods to account for unmeasured confounding, are discussed later in the chapter. 

Comparison	
  Groups	
  
An important choice in study design is the selection of suitable treatment and comparison 
groups.  This step can serve to address many potential limitations of a study, such as how new 
user cohorts eliminate the survivor bias that may be present if current (prevalent) users are 
studied (which would reflect only people who could tolerate the treatment and, most likely, for 
whom treatment appeared to be effective).3  However, this new user approach can limit the 
questions that can be asked in a study, as excluding prevalent users might omit long term users 
(which could overlook risks that arise over long periods of use).  For example, when Rietbrock et 
al. considered the comparative effectiveness of warfarin and aspirin in atrial fibrillation4 in the 
General Practice Research Database, they looked at current use and past use instead of new use.  
This is a sensible strategy in a general practice setting as these medications may be started long 
before the patient is diagnosed with atrial fibrillation.  Yet, as these medications may be used for 
decades, long term users are of great interest.  In this study, the authors used past use to address 
indication, by comparing current users to past users (an important step in a prevalent users 
study).   
 
One approach is to include several different comparison groups and use the observed differences 
in potential biases with the different comparison groups as a way to assess the robustness of the 
results. For example, when studying the association between thiazide diuretics and diabetes, one 
could create reference groups including “non-users”, “recent past-users”, “distant past-users” and 
“users of other antihypertensive medications”.  One would presume that the risk of incident 
diabetes among the “distant past-users” should resemble that of the “non-users”; if not there is a 
possibility that confounding by indication is the reason for the difference in risk.   

Exposure	
  Definitions	
  	
   	
  
Establishing a time window that appropriately captures exposure during etiologically relevant 
time periods can represent a challenge in study design when decisions need to be made in the 
presence of uncertainty.5  Uncertainty about the most appropriate way to define drug exposure 
can lead to questions about what would have happened if the exposure had been defined a 
different way.  A substantially different exposure-outcome association observed under different 
definitions of exposure (such as different time windows or dose [e.g., either daily or cumulative]) 
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might provide insight into the biological mechanisms underlying the association or provide clues 
about potential confounding or unaddressed bias.  As such, varying the exposure definition and 
re-analyzing under different definitions serves as a form of sensitivity analysis.  

Outcome	
  Definitions	
  	
   	
  
The association between exposure and outcome can also be assessed under different definitions 
of the outcome.  Often a clinically relevant outcome in a data source can be ascertained in 
several ways (e.g., a single diagnosis code, multiple diagnosis codes, a combination of diagnosis 
and procedure codes, etc.).  The analysis can be repeated using these different definitions of the 
outcome, which may shed light on the how well the original outcome definition truly reflects the 
condition of interest.   
 
Beyond varying a single outcome definition, it is also possible to evaluate the association 
between the exposure and clinically different outcomes.  If the association between the exposure 
and one clinical outcome is known from a study with strong validity (such as from a clinical 
trial) and can be reproduced in the study, the observed association between the exposure of 
interest and an outcome about which external data are not available becomes more credible.  
Since some outcomes might not be expected to occur immediately after exposure (e.g., cancer), 
the study could employ different lag (induction) periods between exposure and the first outcomes 
to be analyzed in order to assess the sensitivity of the result to the definition.  This result can lead 
either to insight into potential unaddressed bias or confounding, or it could be used as a basis for 
discussion about etiology (e.g., does the outcome have a long onset period).   

Covariate	
  Definitions	
  
Covariate definitions can also be modified to assess how well they address confounding in the 
analysis.  Although a minimum set of covariates may be used to address confounding, there may 
be an advantage to using a staged approach where groups of covariates are introduced, leading to 
progressively greater adjustment.  If done transparently, this approach may provide insight into 
which covariates have relatively greater influences on effect estimates, permitting comparison 
with known or expected associations or permitting the identification of possible intermediate 
variables.   
 
Finally, some covariates are known to be misclassified under some approaches.  A classic 
example is an “intention to treat” analysis which assumes that each participant continues to be 
exposed once they have received an initial treatment.  Originally used in the analysis of 
randomized trials, this approach has been used in observational studies as well.6  It can be 
worthwhile to do a sensitivity analysis on studies that use an intention to treat approach to see 
how different an “as treated” analysis would be even if intention to treat is the main estimate of 
interest, mostly in cases where there is differential adherence in the data source between two 
therapeutic approaches.7   

Summary	
  Variables	
  
Study results can also be affected by the summarization of variables.  For example, time can be 
summarized, and differences in the time window during which exposure is determined can lead 
to changes in study effect estimates.  For example, the risk of venous thromboembolism rises 
with duration of use for oral contraceptives;8 an exposure definition that did not consider the 
cumulative exposure to the medication might underestimate the difference in risk between two 
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different formulations of oral contraceptive. Alternately, effect estimates may vary with changes 
in the outcome definition.  For example, an outcome definition of all cardiovascular events 
including angina could lead to a different effect estimate than an outcome definition including 
only myocardial infarction.  Sensitivity analyses of the outcome definition can allow for a richer 
understanding of the data, even for models based on data from a randomized controlled trial.    

Selection	
  Bias	
  
The assessment of selection bias through sensitivity analysis involves assumptions regarding 
inclusion or participation by potential subjects, and results can be highly sensitive to 
assumptions.  For example, the over-sampling of cases exposed to one of the drugs under study 
(or, similarly, an under-sampling) can lead to substantial changes in effect measures over ranges 
that might plausibly be evaluated.  Even with external validation data, which may work for 
unmeasured confounders,9 it is difficult to try and account for more than a trivial amount of 
selection bias.  Generally, if there is strong evidence of selection bias in a particular data set it is 
best to seek out alternative data sources. 
 
One limited exception may be when the magnitude of bias is known to be small.10  This may be 
true for non-random loss to followup in a patient cohort.  Since the baseline characteristics of the 
cohort are known, it is possible to make reasonable assumptions about how influential this bias 
can be.  But, in the absence of such information, it is generally better to focus on identifying and 
eliminating selection bias at the data acquisition or study design stage.   

Data	
  Source,	
  Sub-­‐Populations,	
  and	
  Analytic	
  Methods	
  
The first section of this chapter covered traditional sensitivity analysis to test basic assumptions 
such as variable definitions and to consider the impact of an unmeasured confounder.  These 
issues should be considered in every observational study of comparative effectiveness research. 
However, there are some additional sensitivity analyses that should be considered, depending on 
the nature of the epidemiological question and the data available.  Not every analysis can (or 
should) consider these factors, but they can be as important as the more traditional sensitivity 
analysis approaches.   

Data	
  Source	
  	
  	
  
For many comparative effectiveness studies, the data used for the analysis were not specifically 
collected for the purpose of the research question.  Instead, the data may have been obtained as 
part of routine care or for purposes of medical billing.  In such cases, it may be possible to 
acquire multiple data sources for a single analysis (and use the additional data sources as a 
sensitivity analysis).  Where this is not feasible, it may be possible to consider differences 
between study results and results obtained from other papers that use different data sources.   
While all data sources have inherent limitations in terms of the data that are captured by the 
database, these limitations can be accentuated when the data were not prospectively collected for 
the specific research purpose.11  For example, secondary use of data increases the chances that a 
known but unmeasured confounder may explain part or all of an observed association.  A 
straightforward example of the differences in data capture can be seen by comparing data from 
Medicare (i.e., US medical claims data) and the General Practice Research Database (i.e., British 
electronic medical records collected as part of routine care).11  Historically, Medicare data have 
lacked the results of routine laboratory testing and measurement (quantities like height, weight, 
blood pressure, and glucose measures), but include detailed reporting on hospitalizations (which 
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are billed and thus well recorded in a claims database).  In a similar sense, historically, the 
General Practice Research Database has had weaker reporting on hospitalizations (since this 
information is captured only as reports given back to the General Practice, that usually are less 
detailed), but better recording than Medicare data for  routine measurements (such as blood 
pressure) that are done as part of a standard medical visit.   
 
Issues with measurement error also can emerge because of the process by which data are 
collected.  For example, “myocardial infarction” coded for the purposes of billing may vary 
slightly or substantially from a clinically verified outcome of myocardial infarction.  As such, 
there will be an inevitable introduction of misclassification into the associations.  Replicating 
associations in different data sources can provide an idea of how changes to the operational 
definition of an outcome can alter the estimates (e.g., comparing a report to a general practitioner 
(GP) with a hospital ICD-9 code).  Replication of a study using different data sources is more 
important for less objectively clear outcomes (such as depression) than it is for more objectively 
clear outcomes (such as all-cause mortality).  
 
An analysis conducted in a single data source may be vulnerable to bias due to systematic 
measurement error or the omission of a key confounding variable.  Associations that can be 
replicated in a variety of data sources, each of which may have used different definitions for 
recording information and which have different covariates available, provide reassurance that the 
results are not simply due to the unavailability of an important confounding variable in a specific 
data set.  Furthermore, when estimating the possible effect of an unmeasured confounder on 
study results, data sets that measure the confounder may provide good estimates of the 
confounder’s association with exposure and outcome (and provide context for results in data 
sources without the same confounder information).   
 
An alternative to looking at completely separate datasets is to consider supplementing the 
available data with external data sources.  An example of a study that took the approach of 
supplementing data was conducted by Huybrechts et al.12.  They looked at the comparative safety 
of typical and atypical antipsychotics among nursing home residents.  The main analysis used 
prescription claims (Medicare and Medicaid data) and found, using high dimensional propensity 
score adjustment, that conventional antipsychotics were associated with an increase in 180 day 
mortality risk  (a risk difference of 7.0 per 100 persons [95% CI: 5.8, 8.2]).  The authors then 
included data from MDS (Minimum Data Set) and OSCAR (Online Survey, Certification and 
Reporting) which contains clinical covariates and nursing home characteristics.12  The result of 
including these variables was an essentially identical estimate of 7.1 per 100 persons (95% CI: 
5.9, 8.2).12  This showed that these differences were robust to the addition of these additional 
covariates.  It did not rule out other potential biases, but it did demonstrate that simply adding 
MDS and OSCAR data would not change statistical inference.   
 
While replicating results across data sources provides numerous benefits in terms of 
understanding the robustness of the association and reducing the likelihood of a chance finding, 
it is often a luxury that is not available for a research question, and inferences may need to be 
drawn from the data source at hand.  



                                                              Chapter 11. Sensitivity Analysis 

184 
 

Key	
  Sub-­‐Populations	
  
Therapies are often tested on an ideal population (e.g., uncomplicated patients thought to be 
likely to adhere to medication) in clinical trials.  Once the benefit is clearly established in trials, 
the therapy is approved for use and becomes available to all patients.  However, there are several 
cases where it is possible that the effectiveness of specific therapies can be subject to effect 
measure modification.  While a key sub-population may be independently specified as a 
population of interest, showing that results are homogeneous across important sub-populations 
can build confidence in applying the results uniformly to all sub-populations.  Alternatively, it 
may highlight the presence of effect measure modification and the need to comment on 
population heterogeneity in the interpretation of results.  As part of the analysis plan, it is 
important to state whether measures of effect will be estimated within these or other sub-
populations present in the research sample in order to assess possible effect measure 
modification: 
 
Pediatric populations.  Children may respond differently to therapy than adults, and dosing  may 
be more complicated.  Looking at children as a separate and important sub-group may make 
sense if a therapy is likely to be used in children.   
 
Genetic variability.  The issue of genetic variability is often handled only by looking at different 
ethnic or racial groups (who are presumed to have different allele frequencies).  Some 
medications may be less effective in some populations due to the different polymorphisms that 
are present in these persons, though indicators of race and ethnicity are only surrogates for 
genetic variation.   
 
Complex patients.  These are patients who suffer from multiple disease states at once.  These 
disease states (or the treatment[s] for these disease states) may interfere with each other, 
resulting in a different optimal treatment strategy in these patients.  A classic example is the 
treatment of cardiovascular disease in HIV infected patients.  The drug therapy used to treat the 
HIV infection may interfere with medication intended to treat cardiovascular disease.  Treatment 
of these complex patients is of great concern to clinicians, and these patients should be 
considered separately where sample size considerations allow for this. 
 
Older adults.  Older adults are another population that may have more drug side effects and 
worse outcomes from surgeries and devices.  Furthermore, older adults are inherently more 
likely to be subject to polypharmacy and thus have a much higher risk of drug-drug interactions.    
 
Most studies lack the power to look at all of these different populations, nor are they likely to be 
all present in a single data source.  However, when it is feasible to do so, it can be useful to 
explore these sub-populations to determine if the overall associations persist or if the best choice 
of therapy is population dependent.  These can be important clues in determining how stable 
associations are likely to be across key sub-populations.  In particular, the researcher should 
identify segments of the population to which there are concerns about generalizing results.  For 
example, randomized trials of heart failure often exclude large portions of the patient population 
due to complexity of the underlying disease state.13  It is critical to try to include inferences to 
these complex sub-populations when doing comparative effectiveness research with heart failure 
as the study outcome, as that is precisely where the evidence gap is the greatest.   
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Cohort	
  Definition	
  and	
  Statistical	
  Approaches	
  
If it is possible to do so, it can also be extremely useful to consider the use of more than one 
cohort definition or statistical approach to ensure that the effect estimate is robust to the 
assumptions behind these approaches.  There are several options to consider as alternative 
analysis approaches.  
 
Samy Suissa illustrated how the choice of cohort definition can affect effect estimates in his 
paper on immortal time bias.14  He considered five different approaches to defining a cohort, 
with person time incorrectly allocated (causing immortal time bias) and then repeated these 
analyses with person time correctly allocated (giving correct estimates).  Even in this 
straightforward example, the corrected hazard ratios varied from 0.91 to 1.13 depending on the 
cohort definition.  There were five cohort definitions used to analyze the use of antithrombotic 
medication and the time to death from lung cancer: time-based cohort, event-based cohort, 
exposure-based cohort, multiple-event-based cohort, and event-exposure-based cohort.  These 
cohorts produce hazard ratios of 1.13, 1.02, 1.05, 0.91, and 0.95, respectively. While this may 
not seem like an extreme difference in results, it does illustrate the value of using varying 
assumptions to hone in on an understanding of the stability of the associations under study with 
different analytical approaches, as in this example where point estimates varied by about +/- 10 
percent depending in how the cohort was defined.   
 
One can also consider the method of covariate adjustment to see if it might result in changes in 
the effect estimates.  One option to consider as an adjunct analysis is the use of a high 
dimensional propensity score,15 as this approach is typically applicable to the same data upon 
which a conventional regression analysis is performed.  The high dimensional propensity score is 
well suited to handling situations in which there are multiple weak confounding variables.  This 
is a common situation in many claims database contexts, where numerous variables can be found 
that are associated (perhaps weakly) with drug exposure, and these same variables may be 
markers for (i.e., associated with) unmeasured confounders.  Each variable may represent a weak 
marker for an unmeasured confounder, but collectively (such as through the high dimensional 
propensity score approach) their inclusion can reduce confounding from this source.  This kind 
of propensity score approach is a good method for validating the results of conventional 
regression models.   
 
Another option that can be used, when the data permit it, is an instrumental variable (IV) analysis 
to assess the extent of bias due to unmeasured confounding (see chapter 10 for a detailed 
discussion of IV analysis).16  While there have been criticisms that use of instruments such as 
physician or institutional preference may have assumptions that are difficult to verify and may 
increase the variance of the estimates17, an instrumental variable analysis has the potential to 
account for unmeasured confounding factors (which is a key advantage), and traditional 
approaches also have unverifiable assumptions.  Also, estimators resulting from the IV analysis 
may differ from main analysis estimators (see Identification Supplement), and investigators 
should ensure correct interpretation of results using this approach.  

Examples	
  of	
  Sensitivity	
  Analysis	
  of	
  Analytic	
  Methods	
  
Sensitivity analysis approaches to varying analytic methods have been used to build confidence 
in results.  One example is a study by Schneeweiss et al.18 of the effectiveness of aminocaproic 
acid compared with aprotinin for the reduction of surgical mortality during coronary-artery 
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bypass grafting (CABG).  In this study, the authors demonstrated that three separate analytic 
approaches (traditional regression, propensity score, and physician preference instrumental 
variable analyses) all showed an excess risk of death among the patients treated with aprotinin 
(estimates ranged from a relative risk of 1.32 [propensity score] to a relative risk of 1.64 
[traditional regression analysis]).  Showing that different approaches, each of which used 
different assumptions, all demonstrated concordant results was further evidence that this 
association was robust.   
 
Sometimes a sensitivity analysis can reveal a key weakness in a particular approach to a 
statistical problem.  Delaney et al.19 looked at the use of case-crossover designs to estimate the 
association between warfarin use and bleeding in the General Practice Research Database.  They 
compared the case-crossover results to the case-time-control design, the nested case control 
design, and to the results of a meta-analysis of randomized controlled trials.  The case-crossover 
approach, where individuals serve as their own controls, showed results that differed from other 
analytic approaches.  For example, the case crossover design with a lagged control window (a 
control window that is placed back one year) estimated a rate ratio of 1.3 (95% CI: 1.0–1.7) 
compared with a rate ratios of 1.9 for the nested case control design, 1.7 for the case time control 
design and 2.2 for a meta-analysis of clinical trials.18  Furthermore, the results showed a strong 
dependence on the length of the exposure window (ranging from a rate ratio of 1.0 to 3.6), 
regardless of overall time on treatment. These results provided evidence that results from a case 
crossover approach in this particular situation needed a cautious interpretation as different 
approaches were estimating incompatible magnitudes of association, were not compatible with 
the estimates from trials, and likely violated an assumption of the case crossover approach 
(transient exposure).  Unlike the Schneeweiss et al. example,18 for which the results were 
consistent across analytic approaches, divergent results require careful consideration of which 
approach is the most appropriate (given the assumptions made) for drawing inferences, and 
investigators should provide a justification for the determination in the discussion.   
 
Sometimes the reasons for differential findings with differences in approach can be obvious 
(concerns over the appropriateness of the case-crossover approach, in the Delaney et al. example 
above).18  In other cases, differences can be small and the focus can be on the overall direction of 
the inference (like in the Suissa example above).14  Finally, there can be cases where two 
different approaches (e.g., an IV approach and a conventional analysis) yield different inferences 
and it can be unclear which one is correct.  In such a case, it is important to highlight these 
differences, and to try and determine which set of assumptions makes sense in the structure of 
the specific problem.    
 
Table 11.1. Study aspects that can be evaluated through sensitivity analysis 
 

Aspect Evaluable through Sensitivity 
Analysis 

Further Requirements 

Confounding I: Unmeasured Maybe Assumptions involving 
prevalence, strength and 
direction of unmeasured 
confounder 



                                                              Chapter 11. Sensitivity Analysis 

187 
 

Aspect Evaluable through Sensitivity 
Analysis 

Further Requirements 

Confounding II: Residual Maybe Knowledge/assumption of which 
variables are not fully measured 

Selection Bias is not present No (Maybe; Generally not testable 
for most forms of selection bias but 
some exceptions [non-random loss 
to followup] may be testable with 
assumptions) 

Assumption or external 
information on source of 
selection bias 

Missing Data No Assumption or external 
information on mechanism for 
missing data 

Data Source Yes Access to additional data sources 
Sub-populations Yes Identifier of sub-population 
Statistical Method Yes None 
Misclassification I: Covariate 
Definitions 

Yes None 

Misclassification II: 
Differential misclassification 

Maybe Assumption or external 
information about mechanism of 
misclassification 

Functional Form Yes None 

Statistical	
  Assumptions	
  
The guidance in this section primarily focuses on studies with a continuous outcome, exposure, 
or confounding factor variable.  Many pharmacoepidemiological studies are conducted within a 
claims database environment where the number of continuous variables is limited (often only age 
is available), and these assumptions do not apply in these settings.  However, studies set in 
electronic medical records or in prospective cohort studies may have a wider range of continuous 
variables, and it is important to ensure that they are modeled correctly.  

Covariate	
  and	
  Outcome	
  Distributions	
  
It is common to enter continuous parameters as linear covariates in a final model (whether that 
model is linear, logistic, or survival).  However, there are many variables where the association 
with the outcome may be better represented as a transformation of the original variable.     
 
A good example of such a variable is net personal income, a variable that is bounded at zero but 
for which there may be a large number of plausible values.  The marginal effect of a dollar of 
income may not be linear across the entire range of observed incomes (an increase of $5,000 
may mean more to individuals with a base income of $10,000 than those with a base income of 
$100,000).  As a result, it can make sense to look at transformations of the data into a more 
meaningful scale.   
 
The most common option for transforming a continuous variable is to create categories (e.g., 
quintiles derived from the data set or specific cut points).  This approach has the advantages of 
simplicity and transparency, as well as being relatively non-parametric.  However, unless the cut-
points have clinical meaning, they can make studies difficult to compare to one another (as each 
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study may have different cut points).  Furthermore, transforming a continuous variable into a 
discrete form always results in loss of information that it is better to avoid, if possible.  Another 
option is to consider transforming the variable to see if this influences the final results.  The 
precise choice of transformation requires knowledge of the distribution of the covariate.  For 
confounding factors, it can be helpful to test several transformations and to see the impact of the 
reduction in skewness (and whether a linear approximation remains appropriate). 

Functional	
  Form	
  
The “functional form” is the assumed mathematical association between variables in a statistical 
model. There are numerous potential variations in functional form that can be the subject of a 
sensitivity analysis. Examples include the degree of polynomial expressions, splines, or additive 
rather than multiplicative joint effects of covariates in the prediction of both exposures and 
outcomes.  In all of these cases, the “functional form” is the assumed mathematical association 
between variables, and sensitivity analyses can be employed to evaluate the effect of different 
assumptions. In cases where non-linearity is suspected (i.e., a non-linear relationship between a 
dependent and independent variable in a model), it can be useful to test the addition of a square 
term to the model (i.e., the pair of covariates age + age2 as the functional form of the independent 
variable age).  If this check does not influence the estimate of the association, then it is unlikely 
that there is any important degree of non-linearity.  If there is an impact on the estimates for this 
sort of transformation, it can make sense to try a more appropriate model for the non-linear 
variable (such as a spline or a generalized additive model).   
 
Transformations should be used with caution when looking at the primary exposure as they can 
be susceptible to overfit.  Overfit occurs when you are fitting a model to random variations in the 
data (i.e., noise) rather than to the underlying relation; polynomial-based models are susceptible 
to this sort of problem.  However, if one is assessing the association between a drug and an 
outcome, this can be a useful way to handle parameters (like age) that will not be directly used 
for inference but that one wishes to balance between two exposure groups.  These 
transformations should also be considered as possibilities in the creation of a probability of 
treatment model (for a propensity score analysis).     

Special	
  Cases	
  
Another modeling challenge for epidemiologic analysis and interpretation is when there is a 
mixture of informative null values (zeros) and a distribution.  This occurs with variables like 
coronary artery calcium (CAC), which can have values of zero or a number of Agatston units.20  
These distributions are best modeled as two parts: one, as a dichotomous variable to determine 
the presence or absence of CAC; and two, using a model to determine the severity of CAC 
among those with CAC>0.  In the specific case of CAC, the severity model is typically log 
transformed due to extreme skew.18  These sorts of distributions are rare, but one should still 
consider the distribution and functional form of key continuous variables when they are 
available.   

Implementations	
  
There are a number of approaches to conducting sensitivity analyses.  This section describes two 
widely used approaches, spreadsheet-based and code-based analyses, and is not intended to be a 
comprehensive guide to implementing sensitivity analyses.  Other approaches to conducting 
sensitivity analysis exist and may be more useful for specific problems.2   
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Spreadsheet-­‐Based	
  
The robustness of a study result to an unmeasured confounding variable can be assessed 
quantitatively using a standard spreadsheet (available at http://www.drugepi.org/dope-
downloads/#Sensitivity Analysis).21  The observed result and ranges of assumptions about an 
unmeasured confounder (prevalence, strength of association with exposure, and strength of 
association with outcome) are entered into the spreadsheet and are used to provide the departure 
from the observed result to be expected if the unmeasured confounding variable could be 
accounted for using standard formulae for confounding.22  Two approaches are available within 
the spreadsheet: 1) an “array” approach; and 2) a “rule out” approach.  In the array approach, an 
array of values (representing the ranges of assumed values for the unmeasured variable) is the 
input for the spreadsheet.  The resulting output is a three dimensional plot that illustrates, 
through a graphed response surface, the observed result for a constellation of assumptions 
(within the input ranges) about the unmeasured confounder.   
 
In the rule out approach, the observed association and characteristics of the unmeasured 
confounder (prevalence and strength of association with both exposure and outcome) are entered 
into the spreadsheet. The resulting output is a two-dimensional graph that plots, given the 
observed association, the ranges of unmeasured confounder characteristics that would result in a 
null finding. In simpler terms, the rule-out approach quantifies, given assumptions, how strong a 
measured confounder would need to be to result in a finding of no association and “rules out” 
whether an unmeasured confounder can explain the observed association. 

Statistical	
  Software-­‐Based	
  
For some of the approaches discussed, the software is available online.  For example, the high 
dimensional propensity score and related documentation is available at 
http://www.hdpharmacoepi.org/download/. For other approaches, like the case-crossover 
design18 the technique is well known and widely available.  Finally, many of the most important 
forms of sensitivity analysis require data management tasks (such as recoding the length of an 
exposure time window) that are straightforward, though time-consuming.   
 
This section describes a few examples of handling slightly more complex functional forms of 
covariates (where the association is not well described by a line or by the log transformation of a 
line).  The first example introduces a spline into a model where the analyst suspects that there 
might be a non-linear association with age (and there is a broad age range in the cohort, making a 
linearity assumption suspect).  The second example looks at how to model CAC, which is an 
outcome variable with a complex form.   

Example	
  of	
  Functional	
  Form	
  	
  
This SAS code is an example of a mixed model that is being used to model the trajectory of a 
biomarker over time (variable = years), conditional on a number of covariates.  The example 
estimates the association between different statin medications with this biomarker.  Like in many 
prescription claims databases, most of the covariates are dichotomous.  However, there is a 
concern that age may not be linearly associated with outcome, so a version of the analysis is tried 
in which a spline is used in place of a standard age variable.  
 
Original Analysis (SAS 9.2): 
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proc glimmix data=MY_DATA_SET; 
class patientid; 
model biomarker_value =age female years statinA statinB diabetes hypertension / s cl; 
random intercept years/subject=patientid; 
run; 
 
Sensitivity Analysis: 
 
proc glimmix data=MY_DATA_SET; 
class patientid; 
effect spl = spline(age); 
model biomarker_value =spl female years statinA statinB diabetes hypertension / s cl; 
random intercept years/subject=patientid; 
run; 
 
While the spline version of the age variable needs to be graphically interpreted, it should handle 
any non-linear association between age and the biomarker of interest.   

Example	
  of	
  Two-­‐Stage	
  Models	
  for	
  Coronary	
  Artery	
  Calcium	
  (CAC)	
  	
  
CAC is an example of a continuous variable with an extremely complex form.  The examples of 
two-stage CAC modeling (below) use variables from the Multi-Ethnic Study of Atherosclerosis. 
Here, the example is testing whether different forms of non-steroidal antiinflammatory drugs 
(below as asa1c, nsaid1c, cox21c) are associated with more or less calcification of the arteries.  
The model needs to be done in two stages as it is thought that the covariates that predict the 
initiation of calcification may differ from those that predict how quickly calcification progresses 
once the process has begun.18  
 
First, a model is developed for the relative risk of having a CAC score greater than zero (i.e., that 
there is at least some evidence of plaques looking at a CT scan of the participant’s coronary 
arteries).  The variable for CAC is cac (1=CAC present, 0=CAC not present).  The repeated 
statement is used to invoke robust confidence intervals (as there is only one subject for each 
unique participant ID number, designated as the variable idno).   
 
SAS 9.2 code example: 
 
proc genmod data = b descending; 
 class idno race1; 
 model cac=age1c male bmi1c race1 
     male  diabetes smoker ex_smoker  sbp1c dbp1c 
   hdl1 ldl1 TRIG1STTN1C  asa1c nsaid1c cox21c 
   / dist = poisson link = log;  
 repeated subject = idno/ type =ind; 
estimate 'asa1c' asa1c 1 -1/ exp; 
estimate 'nsaid1c' nsaid1c 1 -1/ exp; 
estimate 'cox21c' cox21c 1 -1/ exp;; 
run; 
 



                                                              Chapter 11. Sensitivity Analysis 

191 
 

Among those participants with CAC (as measured by an Agatston score, agatpm1c), greater than 
zero, the amount present is then modeled.  As this variable is highly skewed, the amount of CAC 
present is transformed using a log transformation.   
 
SAS 9.2 code example: 
 
proc genmod data = b descending; 
class idno race1; 
where  agatpm1c ne 0;  
model  log_transformed_CAC=age1c male bmi1c race1 
     male  diabetes smoker ex_smoker  sbp1c dbp1c 
   hdl1 ldl1 TRIG1STTN1C asa1c nsaid1c cox21c; 
 repeated subject = idno/ type = unstr; 
run;  
 
The modeling of CAC is a good example of one of the more complicated continuous variables 
that can be encountered in CER.18  To properly model this association, two models were needed 
(and the second model required transformation of the exposure).  Most comparative effectiveness 
projects will involve much simpler outcome variables, and the analyst should be careful to only 
include more complex models where there is an important scientific rationale.   

Presentation	
  
Often sensitivity analyses conducted for a specific CER study can simply be summarized in the 
text of the paper, especially if the number of scenarios is small.17  In other cases, where a broad 
range of scenarios are tested,2 it may be more informative to display analyses in tabular or 
graphical form.   

Tabular	
  
The classic approach to presenting sensitivity analysis results is in a table.  There, the author can 
look at the results of different assumptions and/or population sub-groups.  Tables are usually 
preferred in cases where there is minimal information being presented, as they allow the reader 
to very precisely determine the influence of changes in assumptions on the reported associations.  
This is the approach used by Samy Suissa14 to show differences in results based on different 
approaches to analyzing a cohort of lung cancer patients.   

Graphical	
  
One reason to use graphical methods is where the variable being modeled is, itself, a continuous 
variable, and presenting the full plot is more informative than forcing a categorization scheme on 
the data.  One example, from Robyn McClelland and colleagues (Figure 11.1),23 is a sensitivity 
analysis to see if the form in which alcohol is consumed changes its association with levels of 
CAC.  The analyst, therefore, plots the association with total alcohol consumed overall and by 
type of alcohol (beer, wine, hard alcohol).  Here, both the exposure and the outcome are 
continuous variables, and so it is much easier to present the results of the sensitivity analysis as a 
series of plots.   
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Figure 11.1. Smoothed plot of alcohol consumption versus annualized progression of CAC 
with 95% CIs 
 

 
 
See McClelland RL, Bild DE, Burke GL, et al. Alcohol and coronary artery calcium prevalence, incidence, and 
progression: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2008 Dec;88(6):1593-
601.  This figure is copyrighted by the American Society for Nutrition and reprinted with permission. 
 
Another reason for a graphical display is to present the conditions that a confounder would need 
to meet in order to be able to explain an association.  As discussed, the strength of a confounder 
depends on its association with the exposure, the outcome, and its prevalence in the population.  
Using the standard spreadsheet discussed earlier,20 these conditions can be represented as a plot.  
For example, Figure 11.2 presents a plot based on data from Psaty et al.1,24 
 
Figure 11.2. Plot to assess the strength of unmeasured confounding necessary to explain an 
observed association 
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Figure 11.2 plots the combination of the odds ratio between the exposure and the confounder 
(OREC) and the relative risk between the confounder and the outcome (RRCD) that would be 
required to explain an observed association between the exposure and the outcome by 
confounding alone.  There are two levels of association considered (ARR=1.57 and ARR=1.3) 
and a separate line plotted for each.  These sorts of displays can help illustrate the strength of 
unmeasured confounding that is required to explain observed associations, which can make the 
process of identifying possible candidate confounders easier (as one can reference other studies 
from other populations in order to assess the plausibility of the assumed strength of association). 
Other tools for sensitivity analysis are available, such as the one from Lash et al. 
(http://sites.google.com/site/biasanalysis/).10 

Conclusion	
  
While sensitivity analyses are important, it is necessary to balance the concise reporting of study 
results with the benefits of including the results of numerous sensitivity analyses.  In general, one 
should highlight sensitivity analyses that result in important changes or that show that an analysis 
is robust to changes in assumptions.  Furthermore, one should ensure that the number of analyses 
presented is appropriate for illustrating how the model responds to these changes.  For example, 
if looking at the sensitivity of results to changes in the exposure time window, consider looking 
at 30, 60, and 90 days instead of 15, 30, 45, 60, 75, 90, 105, and 120 days, unless the latter list 
directly illustrates an important property of the statistical model.  The decision as to what are the 
most important sensitivity analyses to run will always be inherently specific to the problem under 
study.  For example, a comparative effectiveness study of two devices might not be amenable to 
variations in exposure window definitions, but might be a perfect case for a physician preference 
instrumental variable.  This chapter highlights the most common elements for consideration in 
sensitivity analysis, but some degree of judgment as to the prioritization of these analyses for 
presentation is required.  Still as a general guideline, the analyst should be able to answer three 
questions: 
 

• Is the association robust to changes in exposure definition, outcome definition, and the 
functional form of these variables?  
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• How strong would an unmeasured confounder have to be to explain the magnitude of the 
difference between two treatments? 

• Does the choice of statistical method influence the directionality or strength of the 
association?   

A plan for including some key sensitivity analysis in developing study protocols and analysis 
plans should be formed with a clear awareness of the limitations of the data and the nature of the 
problem.  The plan should be able to answer these three basic questions and should be a key 
feature of any comparative effectiveness analysis.  The use of sensitivity analysis to examine the 
underlying assumptions in the analysis process will build confidence as to the robustness of 
associations to assumptions and be a crucial component of grading the strength of evidence 
provided by a study.  
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Sensitivity	
  Analyses	
  in	
  an	
  Observational	
  CER	
  Protocol	
  or	
  
Proposal	
  
 

Guidance Key Considerations Check 
Propose and describe planned sensitivity 
analyses  
 

- Consider the effect of changing exposure, outcome, 
confounder, or covariate definitions or classifications 

- Assess expected impact of unmeasured confounders on 
key measures of association 
 

 

Describe important subpopulations in which 
measures of effect will be assessed for 
homogeneity 
 

- Consider pediatric, racial/ethnic subgroups, patients with 
complex disease states 

- Consider inclusion of AHRQ Priority Populations 
(http://www.ahrq.gov/populations/)  

 

State modeling assumptions and how they 
will be tested 
 

 
 

Indicate whether the study will be replicated 
in other databases, if available and feasible 
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Supplement 1. Improving Characterization of Study Populations: the 
Identification Problem 

Abstract	
  
The identification process is an a priori assessment of the treatment effect estimates that can be 
produced by a given research design, and the assumptions required for these estimates to yield 
accurate assessments of a given CER objective.  This supplement describes the factors that a 
researcher should consider when proposing a research design to address (or “identify”) a given 
CER research objective.  Investigators should assess the characteristics of the patient sample 
relative to the study objective, identify the subset(s) of patients whose treatment variation is 
exploited by the research design, and identify the assumptions that are required to ensure that 1) 
the research design produces unbiased treatment effect estimates for the patient subsets and 2) 
the treatment effect estimates produced provide a valid assessment of the study objective.  In 
short, investigators must ensure that the effect estimates produced by a given research design and 
analysis answer the research question of interest and are interpreted appropriately. This 
supplement concludes with a checklist of guidance and key considerations for identifying 
research objectives for CER protocols and proposals.  

Introduction	
  
Comparative effectiveness research (CER) is defined by the Federal Coordinating Council for 
Comparative Effectiveness Research as “the conduct and synthesis of research comparing the 
benefits and harms of different interventions and strategies to prevent, diagnose, treat and 
monitor health conditions in ‘real world’ settings”.  As such, in its most basic sense, CER 
requires treatment variation across patients in the real world to estimate the comparative effects 
of alternative treatments.  The identification process is an a priori assessment of the treatment 
effect estimates that can be produced by a given research design and the assumptions required 
for these estimates to yield accurate assessments of a given CER objective.  Identification has 
been a key component in econometrics since being introduced by Koopmans in 1949,1 and a 
formal definition can be found in the textbook by Cameron and Trivedi.2  Economist Charles 
Manski states that “studies of identification seek to characterize the conclusions that could be 
drawn if one could use a sampling process to obtain an unlimited number of observations.”3  Or, 
as described by Peter Kennedy, “identification is knowing that something is what you say it is.”4   
 
CER researchers should provide a thorough discussion of the circumstances in which treatment 
variation isolated within their research designs is sufficient to make inferences relative to their 
specific CER objective.  Part of this discussion will necessarily deal with sample size issues and 
statistical inference for the parameters estimated.  However, at a more basic level, researchers 
should describe circumstances under which the parameters estimated can actually identify their 
CER research objective.  The next section provides background on the importance of 
identification in CER relative to various possible CER research objectives and introduces the 
issues that a researcher should consider when assessing whether a proposed research design 
identifies a given CER research objective.  The background section is followed by sections that 
focus on each issue.  
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Background	
  
In the traditional CER model in which investigators compare  the effectiveness of a treatment (T) 
versus an alternative (A) for a set of clinically-similar patients in the real world, specific CER 
objectives can involve assessing any of the following: 
 

1. The effect of removing access to T (currently used universally) and switching all patients 
to A; 

2. The effect of T relative to A for those patients that used T, e.g., T is currently used by a 
subset of patients and a policy is considered to remove patient access to T; 

3. The effect of T relative to A for those patients that used A, e.g., T is currently used by a 
subset of patients and a policy is considered to switch all users of A to T; 

4. The effect of a change in the T utilization rate (thereby changing the A rate), e.g., T is 
currently used by a subset of patients and the effects of a general change in T utilization 
rates are considered;  

5. The effect of a change in the T utilization rate that results from a given behavioral or 
policy intervention (thereby changing the A rate), e.g., T is currently used by a subset of 
patients and the effects of a T rate change resulting from a copayment change; and  

6. The effect of any of the above for specific sub-populations of the set of clinically-similar 
patients, e.g., T is currently used by a subset of patients over age 75 and the effects of a T 
utilization rate change that could result from a copayment change for these patients. 

  
Objective (1) involves finding the average treatment effect estimate across the entire population 
of clinically-similar patients.  For example, T could be a treatment used currently by all patients 
and a more expensive alternative has become available.  A CER objective could be to evaluate a 
policy to switch all patients from T to the new alternative.  
 
Objective (2) requires finding the average effect of T relative to A for the subset of patients who 
were treated with T.  For example, if T is currently used by a subset of patients, a CER objective 
could be to evaluate a policy to remove patient access to T, which only will affect the subset of 
patients using T.  Alternatively, objective (3) requires finding the average effect of T relative to 
A for the subset of patients who were treated with A.  For example, if T is not used currently by 
a subset of patients, a CER objective could be to estimate a policy of expanding T usage to all 
patients. 
 
Objective (4) relates to evaluating the effects of treatment rate changes.  Often the relevant 
question for policymakers is not whether a treatment should be used at all, but whether a 
treatment is over- or underused in practice.  Many years ago, John Wennberg correctly posed 
objective (4) with the question “Which Rate is Right?”.5  For example, if 80 percent of patients 
use a beta blocker post-acute myocardial infarction, a CER objective may be to assess the effect 
of increasing the beta blocker treatment rate to 85 percent.  Objective (4) is equivalent to 
objectives (2) and (3) if the specified T rate change means moving from the existing T utilization 
to either zero or one hundred percent, respectively.  Note that objective (4) is defined purposely 
without describing how the T treatment rates would be changed and can perhaps be best 
conceptualized as the effect of rate changes over time as a new treatment diffuses across a 
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clinically-similar population.  The patient subset within a clinically-similar population that only 
receives T when it is fully-diffused may differ from the patient subset that is apt to receive T 
when it is newly introduced.   
 
In contrast, objective (5) is defined with respect to the patient subset whose choice of T relative 
to A can be modified with a specific behavioral or policy intervention.  At a specific T utilization 
rate, the patients defined in (5) can be thought of as a subset of the patients defined in (4), but 
that distinct patients may be affected by distinct interventions.6  For example, an informational-
based intervention may affect a different patient subset than an intervention focused on 
increasing access to treatment or an intervention changing copayment rates.  Objective (6) 
applies to any of the first four objectives with respect to defined subsets of the original clinically-
similar group (e.g., males vs. females, young vs. old, insured vs. uninsured).  
 
The importance of identification with respect to these various CER objectives is highlighted 
when one reviews a seminal instrumental variable (IV) study in health care.7  In an examination 
of the mortality risk associated with more intensive treatment for acute myocardial infarction 
(AMI) in the elderly, McClellan and colleagues focused on the ability of IV estimators to reduce 
confounding bias in observational health care studies.  While their study produced IV estimates 
that suggested that surgical interventions for AMI did not lessen patient mortality risk, the 
authors provided the qualification that their IV estimates should be used only as evidence of 
mortality changes if population surgery rates were modified (objective 4).7  Their estimates did 
not provide evidence of the average benefit of surgery for those that received surgery (objective 
2), the average benefit of surgery over all AMI patients (objective 1), or the average benefits of 
surgery for all those patients not receiving surgery (objective 3).  Without a discussion of the 
patient subset whose surgery-effects were identified by these IV estimates, their results could 
have misled decision-makers.  Other authors who have compared treatment effect estimates 
across estimators using observational data have demonstrated comparisons that lack context 
without a discussion of the treatment effect concepts identified by each estimator.8,9,10   
 
The concept of identification is closely akin to the ideas of external validity or applicability, in 
that it asks researchers to address the question of for whom can their treatment effect estimates be 
generalized.3,11,12,13  However, the classic discussions of these concepts mainly focus on the 
extent to which estimates from randomized studies can be appropriately applied to patients 
dissimilar to study populations.11,12,13 Alternatively, assessment of real world treatment 
effectiveness in CER will often rely on treatment variation generated by the real world treatment 
choices found in observational databases.  Identification takes a broader view and relates to the 
extent of inferences that can be made using estimates from various estimators in the context of 
real world treatment decision-making.  
 
To make a case that a research design has the ability to identify a parameter sufficient to assess a 
specific CER objective, researchers should describe: 1) the characteristics of the patient sample 
used in the research relative to the objective; 2) the subset of patients within the sample whose 
treatment variation was exploited by the research design; 3) the assumptions required to ensure 
that the research design produces unbiased average treatment effect estimates for this patient 
subset; and 4) the assumptions required so that the treatment effect estimates produced will 
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provide a valid assessment of the researcher’s CER objective.  Each of these issues is discussed 
further in separate sections below.   
 
To support the reader, Table S1.1 provides a summary of key concepts and acronyms used 
throughout the sections below. 
 
Table S1.1. Definitions of Key Concepts Relevant to the Identification Process 
 

Concept Definition 
Identification process An a priori assessment of the treatment effect estimates 

that can be produced by a given research design.  This 
process involves understanding the assumptions 
required for estimates to yield accurate assessments of 
the research question of interest. 

On the “support” A research objective is described as being on the 
“support” of a research database if the patient 
population of interest is included in the database.  

Instrumental Variable (IV) A variable that strongly predicts exposure but is neither 
directly nor indirectly related to the outcome.    
Instrumental variable analyses estimate local average 
treatment effects (LATE).    

Estimator A rule for calculating a statistic that estimates a 
population parameter of interest.     

Average Treatment Effect across all 
patients (ATE) 

An estimate of the average treatment effect for all 
patients within a study population.   

Average Treatment effect in Treated 
patients (ATT) 

An estimate of the treatment effectiveness for the 
distinct subset of patients in a study population who 
were exposed to the treatment under study.  Risk 
adjustment (RA) methods produce these estimates.  

Risk Adjustment (RA) methods Methods such as regression-based methods and 
propensity score-based approaches that produce 
estimates interpreted as the average treatment effect for 
the treated (ATT).   

Average Treatment effect in Untreated 
patients (ATU) 

An estimate of the treatment effectiveness for the 
distinct subset of patients in a study population who 
were not exposed to the treatment under study.  

Local Average Treatment Effect 
(LATE) 

An estimate of the average treatment effect for those 
patients within a study population whose treatment 
choices were affected by a set of instrumental variables.  

Local Average Treatment Effect for 
patients whose treatment choices were 
affected by a Policy change (LATE-P) 

An estimate of the average treatment effect for those 
patients within a study population whose treatment 
choices were affected by a specific policy change.  
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Properties	
  of	
  the	
  Study	
  Population	
  
At the very foundation of identification, the CER objectives that can be identified with a given 
research design will be limited by the characteristics of the patients whose data are available for 
the research.  If a CER objective is defined for a patient population with specific characteristics, 
the objective is described as being on the “support” of the research database if these patients are 
included in the research database.3  For example, a research database containing only those 
patients with fee-for-service insurance limits the ability to identify average treatment effects for 
the entire population, patients without insurance, or patients in managed care programs.  
Likewise, randomized trial designs have limited ability to identify average treatment effects for 
those patients not studied (i.e., patients not meeting trial inclusion criteria or refusing to 
participate).  If data are retrospectively collected, changes in treatments over time may limit the 
ability to identify the effectiveness of current treatment choices.  This issue is especially relevant 
when assessing the effectiveness of treatments whose benefits take many years to observe.  For 
example, ten years of followup may be necessary to demonstrate survival differences between 
surgery and radiation treatments for early-stage prostate cancer.  However, at the end of the 
study it may be unclear as to whether the study identified the comparative effectiveness of 
current surgical and radiation technologies. 
 
In the McClellan et al. study cited above, the authors estimated the effectiveness of surgical 
treatments for AMI for fee-for-service Medicare beneficiaries.  It is unclear whether this study 
identified the effectiveness of surgery for younger AMI patients or those with insurance 
coverage distinct from Medicare.  In a followup IV study using data for younger AMI patients 
from Washington State, Brooks et al. showed that surgery effectiveness estimates from AMI 
patients with more generous insurance coverage would understate the effectiveness of surgery 
for AMI patients with less generous coverage.14  

Relationship	
  of	
  Estimation	
  Methods	
  to	
  Patient	
  Subsets	
  
Once a research database is specified and the study population is defined by inclusion criteria, 
the researcher must then make the case that the parameter estimates produced the estimators 
chosen are sufficient to identify the CER objective.  It has been shown that the estimators 
available to estimate treatment effectiveness produce average estimates for distinct subsets of 
patients in the study population.  Risk adjustment (RA) methods including regression-based 
methods and propensity score-based approaches15,16,17 produce estimates that are properly 
interpreted as the average treatment effect for the treated patients in a population 
(ATT).18,19,20,21,22  In contrast, IV estimators yield estimates of an average treatment effect for 
those patients whose treatment choices were affected by a set of instrumental variables or 
“instruments”.7,23,24,25  Because of this limitation, IV estimates are described as estimates of local 
average treatment effects (LATE).25  
 
If the CER objective is to assess treatment effectiveness for the subset of patients that were 
treated (objective 2), a risk-adjusted estimate of ATT may be suitable to address this objective.  
As will be discussed further below, identification would also require the researcher to justify the 
RA estimator assumptions that are necessary to avoid bias.  If the CER objective is to assess 
average treatment effectiveness for the subset of patients whose treatment choices were 
modifiable by an instrument (the LATE for that instrument), an IV estimator is appropriate.  A 
LATE estimate is potentially suitable for evaluating objective (5) if the instrument chosen is 
related to the specified behavioral or policy intervention being evaluated.  For example, suppose 
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a CER objective is to estimate the outcome change that will result from a policy subsidizing 
treatment T relative to treatment A.  An instrument is a measured factor that is related to 
treatment choice, but is assumed to not have a direct relationship with outcomes or other 
unmeasured factors related to outcomes.  A researcher could use observed variation in relative 
copayment rates for T and A for patients across distinct insurance plans as the basis for an 
instrument.  The IV estimates produced using this instrument would be the average treatment 
effects for the subset of patients whose treatment choices are mutable with respect to financial 
incentives and may be suitable to identify the policy objective.  In addition, as with RA 
estimators, identification with IV estimators requires the researcher to justify the IV assumption 
set that the instrument does not have a direct relationship with outcomes or other unmeasured 
factors related to outcomes.    
 
The McClellan AMI study produced both RA estimates using analysis of variance (ANOVA) 
estimators and IV estimates using measures of patient geographic access to key providers as 
instruments.  McClellan’s RA estimates of ATT showed statistically significant reductions in 
mortality associated with surgery for Medicare beneficiaries with AMI, whereas their IV LATE 
estimates showed no mortality reduction from surgery.  Conditional on the validity of 
assumptions underlying each estimator, the RA estimates directly identified a parameter suitable 
to assess the effects of surgery for those that had surgery (objective 2), whereas the IV LATE 
estimate identified a parameter potentially suitable to assess objective (5) for a policy related to 
modification of provider access (e.g., providing greater geographic dispersion of catheterization 
labs).  This estimate combination suggests that, for the most part, the surgery rates for AMI 
Medicare patients in the late 1980s through early 1990s reflected proper sorting of surgery across 
patients – the patients that received treatment benefited, but that expanding treatment rates would 
yield little additional benefit.  These estimates do not directly identify any other CER objectives 
without further assumptions.   

Assumptions	
  Required	
  to	
  Yield	
  Unbiased	
  Estimates	
  
For RA estimators to yield unbiased estimates of ATT, it must be assumed that unmeasured 
factors affecting treatment choice are unrelated to outcomes (or are “ignorable”) after 
conditioning on measured factors.26,16  Similarly, for IV estimators to yield a consistent estimate 
of LATE, an instrument must not be directly or indirectly related to outcomes.  In the McClellan 
study, unbiased estimates of ATT from their ANOVA RA estimator rested on the assumption 
that all unmeasured factors affecting surgery choice had no direct or indirect relationship with 
mortality.  Likewise, for the McClellan study to have produced consistent estimates of LATE, it 
must be assumed that the instruments used in the study had no direct relationship with mortality 
and were also unrelated to any remaining unmeasured factors related to both surgery choice and 
mortality. 

Identification	
  of	
  Research	
  Objectives	
  other	
  than	
  ATT	
  or	
  LATE	
  
If the CER objective requires estimation of a treatment effect for a patient population that is not 
represented in the research database, or requires a parameter that is distinct from ATT or LATE, 
identification requires the researcher to assess the validity of extrapolating estimates to their 
CER objective.  Extrapolation will require assumptions that should be directly stated and 
thoughtfully defended based on clinical plausibility and treatment choice theory.   
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However, if the CER objective is to estimate a treatment effect parameter distinct from ATT or 
LATE, identification requires that the researcher explicitly provide the assumptions that are 
necessary for estimates of ATT or LATE to be validly applied to the set of patients described by 
the research objective.  Examples of other treatment effect parameters that may be needed across 
CER objectives include the average treatment effect on the untreated (ATU) for objective (3), the 
average treatment effect across all patients in the population (ATE) for objective (1), or the 
average treatment effect for the subset of patients whose treatment choices would be affected by 
a specific policy change (LATE-P) for objective (5).  Key assumptions to stipulate before 
extrapolating ATT or LATE estimates to other CER objectives are related to: 
 

• the heterogeneity or homogeneity of treatment effects across patients; and 

• the reasons why treated and untreated patients were observed to make different treatment 
choices. 

For example, to assume that an unbiased estimate of ATT is a valid estimate of ATU, a 
researcher would need to provide a compelling theory as to why the untreated patients did not 
chose a given treatment for reasons other than expected differences in treatment effectiveness.  
An unbiased estimate of ATT would provide sufficient information to identify ATU if the 
researcher can make the case that either: 1) treatment effects are homogeneous across patients 
and factors unrelated to treatment effectiveness are the cause of disparate treatment choices in 
the population or 2) treatment effects are heterogeneous across a population but that providers do 
not react to the treatment effect heterogeneity when making treatment choices.  Condition 2 is 
the notion of “nonessential heterogeneity”.27,20  Under either of these conditions, it could also be 
argued that an estimate of ATT identifies the ATE in a population and the average treatment 
effects that would result from a policy intervention affecting treatment choice (LATE-P).  In 
contrast, if treatment choice was based on expected treatment effectiveness and the patients 
expected to gain most from treatment received treatment (essential heterogeneity)27,28, ATT 
estimates would likely overstate and not identify the true ATE, ATU, and LATE-P in a 
population.  Similar assumptions are required for LATE estimates from a given instrument set to 
be used to identify ATT, ATU, ATE, and LATE-P.  To make the case for the validity of these 
assumptions, researchers have to provide a theory to suggest why the patients whose treatment 
choices varied with the value of their instrument are indistinct from the set of patients underlying 
these parameters. 
 
In the McClellan et al. study, the authors implied that providers considered the effectiveness of 
surgery for each AMI patient when making surgery recommendations and that the AMI patients 
most likely to benefit from surgery were those that received surgery.  As such, the authors 
cautioned against assuming their IV estimates could be used to identify ATE, ATU, or ATT.  
However, the authors suggested that their IV estimates using instruments based on provider 
access provide more suitable answers to address the question of whether surgery rates from AMI 
patients should increase (objective 4) in comparison to existing randomized controlled trial 
(RCT) evidence.  Essentially, the authors argued that their IV estimates identified the treatment 
effect parameter required to assess objective 4. 
 
The Appendix to this supplement contains a general model of treatment choice and outcomes 
that can be used to clarify the model assumptions required to identify CER objectives using 
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estimates of ATT from RA estimators or estimates of LATE from IV estimators.  The general 
model contains a series of factors that are related to treatment effectiveness, treatment choice, 
and outcomes directly.  Twelve hypothetical empirical scenarios are derived by assumptions that 
relate to the existence of these factors.  Scenarios differ by whether treatment effects are assumed 
to be homogeneous or heterogeneous, whether treatment decisions are based on treatment effect 
heterogeneity, and which of the model factors are measured. 
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  Identifying	
  a	
  Research	
  Objective	
  in	
  a	
  CER	
  Protocol	
  or	
  
Proposal	
  
 

Guidance Key Considerations Check 
Describe the characteristics of the patient sample 
used in the research relative to the objective 

Is extrapolation required and what assumptions are needed 
to support this?  

Describe how the estimates from the proposed 
estimation methods (i.e., RA or IV methods) address 
the CER objective 

Does the researcher acknowledge to whom the estimates for 
the method directly apply?  

Describe the assumptions required to ensure that the 
research design produces unbiased average treatment 
effect estimates for this patient sample 

Does the researcher acknowledge the assumptions required 
from each estimator to yield unbiased or consistent 
estimates? 

 

Describe the assumptions required so that the 
treatment effect estimates produced will provide a 
valid assessment of the researcher’s CER objective 

Does the researcher state whether the clinical and 
behavioral assumptions necessary for their estimates 
identify their CER objective? 
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Appendix:	
  Treatment	
  Choice/Outcome	
  Model	
  Specifications,	
  Estimators,	
  and	
  
Identification	
  
 
If a researcher is to make inferences on the effects of treatment (T) on outcome (Y) using 
observational data: 
 
 E(Y|T+Δt)  -  E(Y|T), 
 
a researcher must make assumptions based on the data generating process for both treatment 
choice and outcomes relative to the factors that affect either treatment choice and outcomes.  The 
section below contains a general model that is used to describe the alterative scenarios of CER 
objective identification.  The general model is defined in terms of factors (X’s) with differential 
relationships between treatment choice (T) and outcome (Y): 
 

1. Y  =  g(T(X1,X2), X2, X3, X5) 
2. T  =  f(X1,X2,X3,X4)    where: 
 
X1  = factors related to treatment effectiveness, have no direct effects on outcome, and may 
affect treatment choice (perhaps through their effects on treatment effectiveness);  
 
X2  = factors related to treatment effectiveness, have direct effects on outcome, and may 
affect treatment choice (perhaps through their effects on treatment effectiveness);  
 
X3  = factors unrelated to treatment effectiveness, but have direct effects on outcome, and 
direct effects on treatment valuation; 
 
X4  = factors having no direct effects on outcome, but have direct effects on treatment 
valuation; and 

       
X5  = factors having direct effects on outcome, but do not affect treatment valuation. 

 
Figure S1.1:  Model of Treatment Choice and Outcome (adapted from Brooks and Gang1) 
 

 

Treatment 
Value
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Treatment
(T) Y

Treatment
Choice

(T)P(Y)
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Outcome
Expectations
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and Choice

Actual
 Outcome Y

X2
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See Brooks JM, Fang G. Interpreting treatment-effect estimates with heterogeneity and choice: simulation model 
results. Clin Ther 2009 Apr;31(4):902-19.  This figure is copyrighted by Elsevier Inc. and reprinted with permission. 
 
In a given empirical scenario, the ability to identify and estimate various possible average effects 
of T on Y (average treatment effect [ATE]; average treatment effect on the treated [ATT]; 
average treatment effect on the untreated [ATU]; local average treatment effect for a specific 
instrument [LATE]) is a function of: 1) the assumed relationships between treatment choice and 
outcomes; 2) which of the factors are measured and unmeasured; and 3) the extent of variation in 
observed factors.  The discussion below details the characteristics required for identification of 
CER concepts using risk adjustment (RA) and instrumental variable (IV) estimators across 
variants of this general model.  For each factor “Xi”, distinctions are made for measured (XiM) 
and unmeasured (XiU) factors. 

Model	
  Scenarios	
  
 
1. Treatment effect is homogeneous (no X1 and X2 factors exist) and no factors affecting 

treatment choice (T) have a direct effect on outcome (Y).   
 
Y  =  g(T,X5M,X5U) 
T  =  f(X4M,X4U) 
 
a. Direct RA estimation of Y equation statistically controlling for X5M: 

 
i. Sufficient variation in X4 so that different treatment choices are observed in the 

data. 
 

ii. An assumption of no correlation between X4 and factors in X5U will yield an 
unbiased estimate of ATT.  ATE and ATU are “identified” by this ATT estimate 
through the assumed homogeneity of treatment effect. 

 
b. IV estimation statistically controlling for X5M and using X4M as an instrument: 

 
i. Sufficient variation in X4M so that different treatment choices are observed in the 

data for patients stratified by X4M 
 

ii. An assumption of no correlation between X4M and factors in X5U will yield a 
consistent estimate of LATE specific to the patients whose treatment choices were 
affected by the factors within X4M.  ATE and ATU are “identified” by this LATE 
estimate through the assumed homogeneity of treatment effect. 

 
2. Treatment effect is homogeneous (no X1 and X2 factors exist).  Certain factors affecting 

treatment choice have direct effects on outcome (X3). 
 



 

 209 

  Y  =  g(T,X3M,X3U,X5M,X5U) 
T  =  f(X3M,X3U,X4M,X4U) 

 
a.  Direct RA estimation of Y equation statistically controlling for X3M and X5M: 

i. Sufficient variation in X4 so that different treatment choices are observed in 
the data after controlling for X3M when estimating the outcome equation. 

ii. Assumptions that no X3U variables exist and there are no correlations between 
X4 and factors in X5U will yield an unbiased estimate of ATT.  ATE and ATU 
are “identified” by the ATT estimate through assumed homogeneity of 
treatment effect. 

 
b. IV estimation statistically controlling for X3M and X5M and using measured X4M as an 

instrument: 
 

i. Sufficient variation in X4M so that different treatment choices are observed in 
the data across X4M strata after controlling for X3M. 

 
ii. Assumptions of no correlation between X4M and factors in X3U and X5U will 

yield a consistent estimate of LATE specific to the set of patients whose T 
choices were affected by X4M after controlling for X3M and X5M.  ATE and 
ATU are “identified” by this LATE estimate through the assumed 
homogeneity of treatment effect. 

 
3. Treatment effect is heterogeneous and the factors affecting treatment effectiveness have 

no direct effect on Y (X1 exists; no X2 factors exist).  Moreover, heterogeneity is 
nonessential – decisionmakers do not have sufficient knowledge of the X1 factors 
affecting heterogeneity to affect treatment choice and X1 factors are unmeasured by the 
researcher.  

                
Y  =  g(T(X1U),X5M,X5U) 
T  =  f(X4M,X4U) 

 
a. Direct RA estimation of Y equation statistically controlling for X5M: 

 
i. Sufficient variation in X4 so that different treatment choices are observed in 

the data. 

 
ii. Assumption of no correlations between X4 and X5U will yield an unbiased 

estimate of ATT.  ATE and ATU are “identified” by estimating ATT through 
the assumption that providers do not have knowledge of how X1U relates to 
treatment effectiveness.  However, if X4 was somehow correlated with X1U, 
average X1U would vary between treated and untreated patients and the RA 
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estimate of ATT would not be biased but it would not be possible to identify 
either ATE or ATU. 

 
b. IV estimation statistically controlling for X5M and using X4M as an instrument: 

 
i. Sufficient variation in X4M so different treatment choices are observed in the 

data across X4M strata. 
 

ii. Assumption of no correlation between X4M and factors in X5U yields a 
consistent estimate of LATE specific to the set of patients whose T choices 
were affected by factors within X4M.  ATE and ATU are “identified” by this 
LATE estimate through the assumption that providers do not have knowledge 
of how X1U relates to treatment effectiveness.  However, if X4M factors are 
somehow correlated with X1U then the patients whose treatment choices vary 
with X4M will differ from the rest of the patient population with regard to X1U.  
In this case, the IV LATE estimate would not identify either ATE or ATU. 

 
4. Treatment effect is heterogeneous and factors affecting treatment effectiveness have no 

direct effect on Y (X1 exists; no X2 factors exist).  Moreover, heterogeneity is non-
essential – decision-makers do not have sufficient knowledge of the X1 factors affecting 
heterogeneity to affect treatment choice.  However, certain suspected X1M factors are 
measured by the researcher.  

 
Y  =  g(T(X1M,X1U),X5M,X5U) 
T  =  f(X4M,X4U) 
 
a. Direct RA estimation of Y equation statistically controlling for X5M for patient groups 

stratified by X1M: 

 
i. Sufficient variation in X4 exists so that different treatment choices are 

observed in the data within each stratum of X1M. 
 

ii. Assumption of no correlation between X4 and X5U in each X1M stratum will 
yield an unbiased estimate of ATT within each X1M stratum.  ATE and ATU 
are “identified” by estimating ATT through the assumption that providers do 
not have knowledge of how X1U relates to treatment effectiveness within each 
X1M stratum. 
 

b. IV estimation for patient groups stratified by X1M and statistically controlling for X5M 
and using X4M as an instrument: 

 
i. Sufficient variation in X4M exists so that different treatment choices are 

observed in the data across X4M strata within each X1M stratum. 
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ii. Assumption of no correlation between X4M and X5U in each X1M stratum will 

yield a consistent estimate of LATE specific to the set of patient whose T 
choices were affected by measured factors within X4M.  ATE and ATU are 
“identified” by this LATE estimate through the assumption that providers do 
not have knowledge of how X1U relates to treatment effectiveness within each 
X1M stratum. 
 

5. Treatment effect is heterogeneous and all factors affecting treatment effectiveness have 
no direct effect on Y (X1 exists; no X2 factors exist).  Moreover, heterogeneity is 
essential – decision-makers have knowledge of certain X1 factors affecting treatment 
effectiveness that is sufficient to affect treatment choice, but these factors are 
unmeasured by the researcher. 
 

Y  =  g(T(X1U) ,X5M,X5U) 
T  =  f(X1U,X4M,X4U) 

 
a. Direct RA estimation of Y equation statistically controlling for X5M: 

 
i. Sufficient variation in X4 so that different treatment choices are observed in 

the data. 
 

ii. Assumption of no correlation between X4 and X5U yields an unbiased estimate 
of ATT.  Because X1U is used in treatment choice, the distribution of X1U will 
differ between the treated patients and untreated patients.  Therefore, the ATE 
and ATU are unidentified by the ATT estimate.   

 
b. IV estimation statistically controlling for X5M and using X4M as an instrument: 

 
i. Sufficient variation in X4M so different treatment choices are observed in the 

data across X4M strata. 
 

ii. Assumption of no correlation between X4M and X5M yields a consistent 
estimate of LATE specific to the set of patient whose T choices were affected 
by X4M.  Because the value of X1U will define the subset of patients for whom 
X4M factors affect their treatment choices (e.g., X4M will less likely affect the 
treatment choices for patients with extreme X1U values), the distributions of 
X1U will differ between treated, untreated, and those patient used to estimate 
LATE.  Therefore, the LATE estimate would not identify ATT, ATU, or 
ATE. 

 
6. Treatment effect is heterogeneous and factors affecting treatment effectiveness have no 

direct effect on Y(X1 exists; no X2 factors exist).  Moreover, heterogeneity is essential – 
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decision-makers have knowledge of the X1 factors affecting heterogeneity sufficient to 
affect treatment choice, and all X1 factors are measured by the researcher. 

 
   Y  =  g(T(X1M) ,X5M,X5U) 

 T  =  f(X1M,X4M,X4U) 
 
a. Direct RA estimation of Y equation statistically controlling for X5M within each X1M 

stratum: 

 
i. Sufficient variation in X4 exists within each X1M stratum so that different 

treatment choices are observed within each X1M stratum. 
 

ii. Assumed no correlation between X4 and X5U in each X1M stratum yields an 
unbiased estimate of ATT within each X1M stratum.  Within each X1M stratum, 
the ATE and ATU are “identified” by estimating ATT through the assumed 
homogeneity of treatment effect within the X1M stratum.  

 
b. Estimation for patient groups stratified by X1M and statistically controlling for X5M 

and using X4M as an instrument: 
 

i. Sufficient variation in X4M so that different treatment choices are observed in 
the data across X4M strata within each X1M stratum. 

 
ii. Assumed no correlation between X4M and X5U in each X1M stratum yields a 

consistent estimate of LATE specific to the set of patient whose T choices 
were affected by X4M.  ATE and ATU are “identified” within each X1M 
stratum by estimating this LATE through the assumed homogeneity of 
treatment effect within each X1M stratum.  Moreover, with X1M measured it 
would be possible to identify population-level values of ATT, ATE, and ATU 
using LATE estimates based on X4M.1,2,3  

 
7. Treatment effect is heterogeneous and factors affecting treatment effectiveness have no 

direct effect on Y (X1 exists; no X2 factors exist).  Moreover, heterogeneity is essential – 
decision-makers have knowledge of the X1 factors affecting heterogeneity sufficient to 
affect treatment choice.  Only certain X1 factors are measured by the researcher. 

 

Y  =  g(T(X1M,X1U) ,X5M,X5U) 
 T  =  f(X1M,X1U,X4M,X4U) 
 

a. Direct RA estimation of Y equation statistically controlling for X5M within each X1M 
stratum: 
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i. Sufficient variation in X4 or X1U exists within each X1M stratum so that 
different treatment choices are observed within each X1M stratum. 

 
ii. Assumed no correlation between X4 andX1U and X5U in each X1M stratum 

yields unbiased estimates of ATT in each X1M stratum.  However, within each 
X1M stratum, ATE and ATU that are not identified as X1U will be distributed 
differently for treated and untreated patients within each X1M stratum. 

 
b. IV estimation for patient groups stratified by X1M and statistically controlling for X5M 

and using X4M as an instrument: 

 
i. Sufficient variation in X4M so that different treatment choices are observed in 

the data across X4M strata within each X1M stratum. 
 

ii. Assumed no correlation between X4M and X5U in each X1M stratum yields 
consistent estimates of LATE in each X1M stratum that are specific to the set 
of patient whose T choices were affected by X4M.  ATE and ATU are not 
“identified” within each X1M stratum as the distribution of X1U will vary 
between treated and untreated patients within each X1M stratum. 

 
8. Treatment effect is heterogeneous and the factors affecting treatment effectiveness have 

direct effects on Y (no X1 factors exist; X2 factors exist).  Moreover, heterogeneity is 
non-essential – decision-makers do not have sufficient knowledge of the X2 factors 
affecting heterogeneity to affect treatment choice and X2 factors are unmeasured by the 
researcher.  
 

Y  =  g(T(X2U), X2U,X5M,X5U) 
            T  =  f(X4M,X4U) 
 

a. Direct RA estimation of Y equation statistically controlling for X5M: 

 
i. Sufficient variation in X4 so that different treatment choices are observed in 

the data. 
 

ii. Assumed no correlations between X4 and X2U and X5M yields an unbiased 
estimate of ATT.  ATE and ATU are “identified” by estimating ATT through 
the assumption that X4 and X2U are uncorrelated.  If X4 was correlated with 
X2U, average X2U would vary between treated and untreated patients and the 
RA estimate of ATT would be biased (which is distinct from scenario 3). 

 
b. IV estimation statistically controlling for X5M and using X4M as an instrument: 
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i. Sufficient variation in X4M so different treatment choices are observed in the 
data across X4M strata. 

 
ii. Assumed no correlation between X4M and X2U and X5U yields a consistent 

estimate of LATE specific to the set of patient whose T choices were affected 
by factors within X4M.  ATE and ATU are “identified” by estimating this 
LATE through the assumption that X4M and X2U factors are uncorrelated.  If 
X4M factors are correlated with X2U then IV LATE estimate would be 
inconsistent. 
 

9. Treatment effect is heterogeneous and factors affecting treatment effectiveness have 
direct effect on Y (no X1 factors exists; X2 factors exist).  Moreover, heterogeneity is 
non-essential – decision-makers do not have sufficient knowledge of the X2 factors 
affecting heterogeneity to affect treatment choice.  However, certain suspected X2M 
factors are measured by the researcher.  
 

             Y  =  g(T(X2M,X2U), X2M,X2U,X5M,X5U) 
             T  =  f(X4M,X4U) 
 

a. Direct RA estimation of Y equation statistically controlling for X5M for patient groups 
stratified by X2M: 
 

i. Sufficient variation in X4 exists so that different treatment choices are 
observed in the data within each stratum of X2M. 

 
ii. Assumed no correlation between X4 and X2U and X5U in each X2M stratum 

yields unbiased estimates of ATT within each X2M stratum.  Within each X2M 
stratum, the ATE and ATU are “identified” by the ATT estimate through the 
assumed lack of provider knowledge of treatment effect heterogeneity related 
to X2U when making treatment choices within each X2M stratum. 

 
b. IV estimation for patient groups stratified by X2M and statistically controlling for 

X5M and using X4M as an instrument: 
 

i. Sufficient variation in X4M exists so that different treatment choices are 
observed in the data across X4M strata within each X2M stratum. 

 
ii. Assumed no correlation between X4M and X2U and X5U in each X2M stratum 

yields consistent estimates of LATE specific in each X2M stratum for the set of 
patient whose treatment choices were affected by factors within X4M.  ATE 
and ATU are “identified” by LATE within each X2M stratum through the 
assumed lack of provider knowledge of treatment effect heterogeneity related 
to X2U when making treatment choices within each X2M stratum. 
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10. Treatment effect is heterogeneous and all factors affecting treatment effectiveness have 

no direct effect on Y (no X1 factors exists; X2 factors exist).  Moreover, heterogeneity is 
essential – decision-makers have knowledge of certain X2 factors affecting treatment 
effectiveness that is sufficient to affect treatment choice, but these factors are 
unmeasured by the researcher. 

 
             Y  =  g(T(X2U) ,X2U,X5M,X5U) 
             T  =  f(X2U,X4M,X4U) 
 

a. Direct RA estimation of Y equation statistically controlling for X5M 
i. Sufficient variation in X4 so that different treatment choices are observed in 

the data. 
 

ii. Because X2U is unmeasured and is related to both Y and T, the RA estimator 
will be a biased estimate of ATT.  Accordingly, ATE and ATU will be 
unidentified by the biased ATT estimate. 

 
b. IV estimation statistically controlling for X5M and using X4M as an instrument: 

 
i. Sufficient variation in X4M so different treatment choices are observed in the 

data across X4M strata. 

 
ii. Assumed no correlation between X4M and X2U & X5U in each X2M stratum 

yields consistent estimates of LATE in each X2M stratum specific to the 
patients whose treatment choices were affected by X4M.  Because the value of 
X2U will define the subset of patients for whom X4M factors affect their 
treatment choices (e.g., X4M will less likely affect the treatment choices for 
patients with extreme X2U values), the distributions of X2U will differ between 
treated, untreated, and those patient used to estimate LATE.  Therefore, 
LATE, while consistent, would not identify ATT, ATU, or ATE. 

 
11. Treatment effect is heterogeneous and factors affecting treatment effectiveness have no 

direct effect on Y (no X1 factors exists; X2 factors exist).  Moreover, heterogeneity is 
essential – decision-makers have knowledge of the X2 factors affecting heterogeneity 
sufficient to affect treatment choice, and all X2 factors are measured by the researcher. 

 
 Y  =  g(T(X2M) ,X2M,X5M,X5U) 

             T  =  f(X2M,X4M,X4U) 
 

a. Direct RA estimation of Y equation statistically controlling for X5M within each X2M 
stratum: 
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i. Sufficient variation in X4 exists within each X2M stratum so that different 
treatment choices are observed within each X2M stratum. 

 
ii. Assumed no correlation between X4 and X5U in each X2M stratum yields 

unbiased estimate of ATT within each X2M stratum.  Within each X2M stratum, 
the ATE and ATU are “identified” by estimating ATT through assumed 
homogeneity of treatment effect within each X2M stratum. 

 
b. IV estimation for patient groups stratified by X2M and statistically controlling for X5M 

and using X4M as an instrument: 

 
i. Sufficient variation in X4M so that different treatment choices are observed in 

the data across X4M strata within each X2M stratum. 
 

ii. Assumed no correlation between X4M and X5U in each X2M stratum yields 
consistent estimates of LATE in each X2M stratum specific to the patients 
whose treatment choices were affected by X4M.  ATE and ATU are 
“identified” within each X2M stratum by this LATE estimate through assumed 
homogeneity of treatment effect within each X2M stratum. 

 
12. Treatment effect is heterogeneous and factors affecting treatment effectiveness have no 

direct effect on Y (no X1 factors exists; X2 factors exist).  Moreover, heterogeneity is 
essential – decision-makers have knowledge of the X2 factors affecting heterogeneity 
sufficient to affect treatment choice.  Only certain X2 factors are measured by the 
researcher. 
 

             Y  =  g(T(X2M,X2U),X2M,X2U,X5M,X5U) 
             T  =  f(X2M,X2U,X4M,X4U) 
 

a. Direct RA estimation of Y equation statistically controlling for X5M within each X2M 
stratum: 
 

i. Sufficient variation in X4 or X2U exists within each X1M stratum so that 
different treatment choices are observed within each X1M stratum. 

 
ii. Because X2U is related to both Y and T and is unmeasured, the RA estimator 

yields a biased estimate of ATT within each X2M stratum.  Accordingly, ATE 
and ATU will be unidentified by the biased ATT estimate within each X2M 
stratum. 

 
b. IV estimation for patient groups stratified by X2M and statistically controlling for X5M 

and using X4M as an instrument: 
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i. Sufficient variation in X4M so that different treatment choices are observed in 

the data across X4M strata within each X2M stratum. 
 

ii. Assumed no correlation between X4M and X2U & X5U in each X2M stratum 
yields consistent estimates of LATE in each X2M stratum specific to the 
patients whose treatment choices were affected by X4M.  ATE and ATU are 
not “identified” within each X2M stratum as the distribution of X2U will vary 
between treated and untreated patients within each X2M stratum. 

Appendix	
  to	
  S1	
  References
 
1  Brooks JM, Fang G. Interpreting treatment-effect estimates with heterogeneity and choice: 

simulation model results. Clin Ther 2009 Apr;31(4):902-19. 
2 Angrist JD, Fernandez-Val I. Extrapolate-ing:  external validity and overidentification in the 

LATE framework. National Bureau of Economic Research Working Paper. Cambridge, 
Massachusetts; 2010. 

3 Heckman JJ, Vytlacil E. Structural equations, treatment effects, and econometric policy 
evaluation. Econometrica 2005 May;73(3):669-738. 

 
 



 S2. Use of Directed Acyclic Graphs (DAGs) 

 218 

Supplement	
  2.	
  Use	
  of	
  Directed	
  Acyclic	
  Graphs	
  (DAGs)	
   	
  

Abstract	
  
This supplement describes how counterfactual theory is used to define causal effects and the 
conditions in which observed data can be used to estimate counterfactual based causal effects.  
Basic definitions and language used in causal graph theory are then presented.  The graphical 
separation rules linking the causal assumptions encoded in a diagram to the statistical relations 
implied by the causal diagrams are then presented.  The supplement concludes with a description 
of how Directed Acyclic Graphs (DAGs) can be used to select covariates for statistical 
adjustment, identify sources of bias, and support causal interpretation in comparative 
effectiveness studies. 

Introduction	
  
Under the rubric of structural equation modeling, causal diagrams were historically used to 
illustrate qualitative assumptions in linear equation systems.  Judea Pearl extended the 
interpretation of causal diagrams to probability models, which enabled the use of graph theory in 
probabilistic and counterfactual inference.1  Epidemiologists then recognized that these diagrams 
could be used to illustrate sources of bias in epidemiological research,2 and for this reason have 
recommended the use of causal graphs to illustrate sources of bias and to determine if the effect 
of interest can be identified from available data.3,4,5,6  
 
This supplement begins with a brief overview of how counterfactual theory is used to define 
causal effects and the conditions under which observed data can be used to estimate 
counterfactual based causal effects.  We then present the basic definitions and language used in 
causal graph theory.  Next we describe construction of causal diagrams and the graphical 
separation rules linking the causal assumptions encoded in a diagram to the statistical relations 
implied by the diagram.  The supplement concludes with a description of how Directed Acyclic 
Graphs (DAGs) can be used to select covariates for statistical adjustment, identify sources of 
bias, and support causal interpretation in comparative effectiveness studies. 

Estimating	
  Causal	
  Effects	
  	
  
The primary goal of nonexperimental comparative effectiveness research is to compare the effect 
of study treatments on the risk of specific outcomes in a target population.  To determine if a 
treatment had a causal effect on an outcome of interest, we would like to compare individual-
level outcomes under each treatment level.  Unfortunately, an individual’s outcome can only be 
observed under one treatment condition, which is often referred to as the factual outcome.  
Outcomes under treatment conditions not actually observed are referred to as counterfactual or 
potential outcomes.7,8  Using counterfactual theory, we would say that a treatment had a causal 
effect on an individual’s outcome if the outcome experienced would have been different under an 
alternative treatment level.  For example, we would conclude that treatment A had a causal effect 
on the outcome Y if, say, an individual died five days after taking the drug (a=1), but would have 
remained alive on day five if he had not taken the medication (a=0).  Due to the missing 
counterfactual data, causal effect measures cannot be directly computed for individual people 
without very strong assumptions.  Nevertheless, average causal effects can be consistently 
estimated in randomized experiments and nonexperimental studies under certain assumptions.7,8 
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Assuming we can simultaneously estimate the outcome risk for the entire population under 
different treatment conditions, then an average causal effect occurs when the outcome risk is not 
equal across levels of treatment.  Using a dichotomous treatment (A) and outcome (Y) as the 
example, the causal effect in a population is the probability of the outcome occurring when the 
entire population is treated Pr[Ya=1=1] minus the probability of the outcome occurring when the 
entire population is untreated Pr[Ya=0=1].  Populations, like individuals, cannot simultaneously 
receive different levels of treatment.  We can, however, use observed data to draw inferences 
about the probability distributions or expectations over a population of counterfactual variables.  
One of the important assumptions required for using only observed data (factual data) to estimate 
average causal effects is exchangeability.   
 
In an ideal randomized experiment, treatment assignment is independent of the counterfactual 
outcomes, and therefore the two groups are exchangeable.7,9  This means that the risk of 
experiencing the outcome in the two groups at the time of treatment assignment is equal to the 
risk in the full population.  The equivalency to the full population allows us to use the observed 
data from the treated group to estimate what the treatment effect would have been if the entire 
population was treated, and it also allows us to use the observed data from the untreated group to 
estimate the effect of no treatment in the full population.  In addition, because the outcome risks 
in the subpopulations are equivalent at the time treatment is assigned, the observed risk 
difference between the treatment groups can be attributed to treatment effects.10  In an ideal 
randomized trial the outcome experience had the entire population been treated (Pr[Ya=1=1]) is 
equal to the probability of the outcome occurring in the subset of the population who received 
treatment (Pr[Y=1|A=1]), and the same holds for the untreated group.  Using the risk difference 
scale, this means the conditional risk difference can be used to estimate the marginal causal risk 
difference (Pr[Y=1|A=1] - Pr[Y=1|A=0]) = (Pr[Ya=1=1]- (Pr[Ya=0=1]). 
 
In nonexperimental studies, marginal exchangeability can rarely be assumed since patients and 
providers typically select treatments based on their belief about the risk of specific outcomes.  In 
this case marginal exchangeability does not hold, but exchangeability may hold within levels of 
risk factors pertaining to the outcome.  Causal inference from nonexperimental data is based on 
the critical assumption that within levels of important risk factors, treatment assignment is 
effectively randomized.  This assumption is also referred to as “conditional exchangeability”, 
“conditional unconfoundedness”, or the assumption of “conditionally ignorable treatment 
assignment”.8,10  When we assume that treatment was randomly assigned conditional on a set of 
covariates, causal inference for nonexperimental comparative effectiveness studies requires some 
form of covariate adjustment. 
 
The question then concerns the adjustments that must be made in order to generate conditional 
exchangeability and avoid bias.  DAGs have been found to be particularly helpful in diagnosing 
sources of bias and helping investigators select a set of covariates that allow the estimation of 
causal effects from observed data.  Using DAG theory, confounding bias can be characterized as 
an unblocked “backdoor” path from the treatment to the outcome.  The next section presents 
terminology for DAGs and their utility in selecting covariates for statistical adjustment.  
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DAG	
  Terminology	
  
DAGs are used to encode researchers’ a priori assumptions about the relationships between and 
among variables in causal structures.  DAGs contain directed edges (arrows), linking nodes 
(variables), and their paths.  A path is an unbroken sequence of distinct nodes connected by 
edges; a directed path is a path that follows the edges in the direction indicated by the arrows, 
such as the path from A to C (A→B→C).  An undirected path does not follow the direction of 
the arrows, such as the following A to C path (A←B→C).  Kinship terms are often used to 
represent relationships within a path.  If there exists a directed path from A to C, then A is an 
ancestor of C and C is a descendent of A.  Using the directed path example of A→B→C, A is a 
direct cause or parent of B, and B is a child of A and parent of C, while A is considered an 
indirect cause or ancestor of C.  The node B lies on the causal pathway between A and C and is 
considered an intermediate or mediator variable on the directed path.  DAGs are acyclic since no 
node can have an arrow pointing to itself, and all edges must be directed (contain arrows).2  
These rules enforce the understanding that causes must precede their effects.  Mutual causation is 
handled in DAGs by including a time component, which allows A to cause B at time (t) and B to 
cause A at some later time (t+1). 
 
The first step in creating a causal DAG is to diagram the investigators’ understanding of the 
relationships and dependencies among variables.  Construction of DAGs should not be limited to 
measured variables from available data; they must be constructed independent from available 
data and from background knowledge of the causal network linking treatment to the outcome.  
The most important aspect of constructing a causal DAG is to include on the DAG any common 
cause of any other two variables on the DAG.  Variables that only causally influence one other 
variable (exogenous variables) may be included or omitted from the DAG, but common causes 
must be included for the DAG to be considered causal.  The absence of arrows linking variables 
in a DAG indicates the variables are not causally related (i.e., manipulation of one variable does 
not cause a change in the value of the other variable).  Investigators may not agree on a single 
DAG to represent a complex clinical question, and when this occurs, multiple DAGs may be 
constructed and statistical associations observed from available data may be used to evaluate the 
consistency of observed probability distributions with the proposed DAGs.  Statistical analyses 
may be undertaken as informed by different DAGs and the results can be compared. 
 
Figure S2.1 is a modified DAG described in chapter 7 illustrating a highly simplified 
hypothetical study to compare rates of acute liver failure between new users of CCB and 
diuretics.   
 

 
 
 
 

Figure S2.1. Hypothetical DAG illustrating 
causal relationships among formulary 
policy (C1) and treatment with a CCB (A) 
and treatment for erectile dysfunction (C4).  
Alcohol abuse (C2) influences impotence 
(C3), which influences treatment of erectile 
dysfunction (C4) and is a cause of acute 
liver disease (Y). In this example there is no 
effect of antihypertensive treatment on liver 
disease.  
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Causal diagrams can be used to express causal assumptions and the statistical implications of 
these assumptions.11,12  
 
Independence Relationships 
 
DAGs can be used to infer dependence and conditional independence relationships if the causal 
structure represented by the graph is correct.  The rules linking the structure of the graph to 
statistical independence are called the d-separation criteria and are stated in terms of blocked and 
unblocked paths.2  To discuss blocked and unblocked paths, we need one more graphical 
concept-- that of a collider.  A node is said to be a collider on a specific path if it is a common 
effect of two variables on that path  (i.e., when both the preceding and subsequent nodes have 
directed edges going into the collider node).  In Figure S2.1, C4 is a collider on the path 
A←C1→C4 ← C3← C2→Y.  Note, however, that whether a variable is a collider or not is relative 
to the path.  C4 is not a collider on the path C4 ← C3← C2→Y.  
 
We can now define blocked paths.  A path from a node A to a node Y is unconditionally blocked 
if there is a collider on the path from A to Y (e.g., Figure S2.2).  A path from a node A to a node 
Y is said to be blocked conditional (when adjusting) on a set of variables Z if either there is a 
variable in Z on the path that is not a collider or if there is a collider on a path such that neither 
the collider nor any of its descendants are in Z.  Otherwise the path is said to be unblocked or 
open.  Two paths between A and Y exist in Figure S2.2.  The path A←C1→C4 →C5 →Y is an 
open path, while the A←C1→C4 ← C3← C2→Y path is closed due to the collider C4.  
Adjustment for C4 or C5 will close the A←C1→C4 →C5 →Y path but open a backdoor path on 
the A←C1→C4 ← C3← C2→Y pathway by inducing an association between C1 and C2.  
Adjustment for C1 alone will close the open A←C1→C4 →C5 →Y path and not alter the 
A←C1→C4 ← C3← C2→Y path, which is closed due to the collider. 
 

 
 
 
 
Blocked paths correspond to independence; unblocked paths to association.  More formally, we 
say that a node A and a node Y are d-separated conditional on Z if all paths from A to Y are 
blocked conditional on Z.  If a DAG correctly describes the causal structures, then it follows that 
if A and Y are d-separated conditional on Z, then A and Y are conditionally independent given 
Z.  This is sometimes referred to as the d-separation criterion.  On the other hand, variables that 
are marginally independent but have a common effect become conditionally dependent when 
statistically adjusting the common effect.  Adjusting for such colliders is said to open up 
backdoor paths and induce conditional associations.  A stylized example used to illustrate this 
concept describes two ways in which the pavement (X3) can be wet – the sprinklers system (X1) 
is on or it is raining outside (X2).11  One assumes that the owners of the sprinkler system watered 

Figure S2.2. Hypothetical DAG used to 
illustrate the open backdoor path rule. 
Adjustment for C4 or C5 will open the  
A←C1→C4 ← C3← C2→Y path. 
Adjustment for C1 will close the open 
A←C1→C4 →C5 →Y path. 
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their lawn based on a preprogrammed schedule making use of sprinklers unassociated with rain.  
Suppose that you had a data table with data on X1, X2 and X3 during the past year.  If you were to 
evaluate the association between X1 and X2, you would find that X1 does not predict X2 and X2 
does not predict X1.  Now suppose you only use data where the concrete is wet and reevaluate 
the association between X1 and X2.  By conditioning on the concrete being wet (X3 =1), 
dependence is established between the sprinklers being on and rain that did not previously exist.  
For example, if we know the concrete is wet and we also know the sprinklers are not on, then we 
can predict that it must be raining.  Conditioning on a collider by either statistical adjustment or 
selection into the study can generate unintended consequences and bias the effect estimate. 

Using	
  DAGs	
  to	
  select	
  covariates	
  and	
  diagnose	
  bias	
  
In a nonexperimental setting, the goal of covariate selection is to remove confounding by 
covariate selection.  As described in chapter 7, intermediate, collider and instrumental variables 
may statistically behave like confounders.  For this reason, background knowledge is required to 
distinguish confounders for statistical adjustment.  The most important result relating conditional 
exchangeability to causal diagrams is Pearl’s backdoor path adjustment theorem, which provides 
a simple graphical test that investigators can use to determine whether the effect of A on Y is 
confounded.  A set of variables, Z, satisfies the backdoor criterion relative to the treatment A and 
outcome Y in a DAG if no node in Z is a descendant of A and Z blocks every path between A 
and Y that begins with an arrow into A.  The backdoor path adjustment theorem states that if Z 
satisfies the backdoor path criterion with respect to A and Y then the treatment groups are 
exchangeable conditional on Z.1 
 
Using the backdoor path adjustment theorem, we can see the close connection between backdoor 
paths and common causes.  Figure S2.3 indicates that treatment (A) and outcome (Y) have a 
common cause (C4).  The backdoor path from A to Y is open and confounding is present unless 
C4 is statistically adjusted.  We will represent conditioning on a variable by placing a square 
around the node, as illustrated in Figure S2.3.  Unfortunately, adjustment for C4 opens a 
backdoor path from A to Y through C1, C4, C3, and C2, resulting in bias, unless additional 
adjustment is made for C1, C2, or C3, or any combination of these.  The key to ensuring 
conditional exchangeability is to measure and condition on variables needed to block all 
backdoor paths between the treatment and outcome (i.e., to condition on a sufficient set of 
confounders).  When the effect of A on Y is unconfounded given a set of variables Z, we can 
then  estimate the average causal effect described above using observed conditional probabilities 
(Pr[Y=1|A=1, Z=z] - Pr[Y=1|A=0, Z=z]) = (Pr[Ya=1=1|Z=z]- Pr[Ya=0=1|Z=z]). 
 
 

 
 
 

Figure S2.3. DAG illustrating causal 
relationships among formulary policy (C1) 
and treatment with a CCB (A) and 
treatment for erectile dysfunction (C4).  
Alcohol abuse (C2) influences impotence 
(C3), which influences treatment of erectile 
dysfunction (C4) and is a cause of acute 
liver disease (Y). In this example C4 is a 
confounder and collider. Adjustment of C4 
is additional to adjustment for at least one 
other variable on the open C1-3 pathway.  
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Using	
  DAGs	
  to	
  diagnose	
  selection	
  bias	
  
The previous section described the use of DAGs to remove confounding, thus enabling the 
estimation of average causal effects using observed patient responses to treatment.  This section 
describes the use of DAGs to diagnose bias that results from selection into a study.  Selection 
bias results when the estimated causal effect is different in the subset of the population being 
evaluated when the goal is to make an inference to the full population.  Selection bias occurs 
when the risk for the outcome in the population being studied is different than the risk in the 
target population, which can happen when study participants are not representative of the target 
population.  Various causes of selection bias have been described as healthy-worker bias, 
volunteer bias, selection of controls into case-control studies, differential loss-to-followup, and 
non-response.   
 
In the previous section, we described a type of selection bias that occurs when conditioning on a 
collider variable.  We called this situation collider stratification bias.  This bias occurs from 
estimating the average causal effect within “selected” stratum, then averaging across strata.  It 
turns out that the basic structure of selection bias is the same as collider stratification bias, which 
has been described as conditioning on a common effect of two other variables.6  In the following 
section, we provide an example of how conditioning on a common effect can result from 
differential loss to followup.  Please review Hernán’s paper titled, “A structural approach to 
selection bias” for a more complete discussion of other forms of selection bias.   
 
Selection bias is a result of conditioning on a common effect of two variables.  To simplify, 
consider a randomized trial of antihypertensive treatments (CCB or other) and the outcome of 
acute liver disease (Y).  The DAG in Figure S2.4 indicates that A is not causally associated with 
Y, but we would expect an association between A and Y conditional on S even though A does 
not cause Y.  Assume that patients initiated on CCB have a higher rate of experiencing adverse 
drug effects and are more likely to drop out of the study (S=1) as represented from the arrow 
from A to S.  Further assume that patients who abuse alcohol (C=1) are more likely to drop out 
as well.  The square around S indicates that the analysis is restricted to individuals who did not 
drop out of the study. 
 
Due to the random assignment of A, the variables A and C are marginally independent, but 
become conditionally dependent when selecting only subjects who remained in the study (i.e., 
those who did not drop out).  Knowing that a study subject was an alcohol abuser but remained 
in the study suggests that they did not experience adverse effects of therapy.  Restricting this 
analysis to subjects who did not drop out will result in patients treated with CCB having a lower 
proportion of alcohol abuse, thus making CCBs appear to be protective against acute liver failure 
when no causal association exists.  This conditional dependence opens a pathway from A to Y 
through C thus biasing the observed risk difference from the counterfactual risk difference and 
resulting in selection bias. 
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There are situations where the causal risk estimate can be recovered from a design affected by 
selection bias.  A technique called inverse probability weighting that generates a 
pseudopopulation where all subjects remained in the study can, under certain assumptions, be 
used to estimate the average causal effect in the entire target population.  Inverse probability 
weighting is based on assigning a weight to each selected subject so that she accounts in the 
analysis not only for herself but also for those with similar characteristics (i.e., those with the 
same values of C and A) in subjects who were not selected.6  The effect measure based on the 
pseudopopulation, in contrast to that based on the selected population, is unaffected by selection 
bias provided that the outcome of the uncensored subjects truly represents the unobserved 
outcomes of the censored subjects.  This provision will be satisfied if the probability of selection 
is calculated conditional on A and all other factors that independently predict both selection and 
the outcome.  However, this is an untestable assumption and one must carefully consider 
influences of discontinuation and the outcome when attempting to statistically address selection 
bias. 

Conclusion	
  
This supplement described the use of DAGs to identify sources of bias in nonexperimental 
comparative effectiveness research.  The goal of covariate selection is to generate conditional 
exchangeability thus allowing unbiased causal effect estimates within strata of covariates that are 
then pooled in some manner to generate unbiased average causal effects.  The challenge of 
nonexperimental research is choosing a set of covariates that removes confounding bias and does 
not inadvertently generate other sources of bias.  A confounder is typically considered a common 
cause of treatment and outcome, and DAG theory conceptualizes confounding as an open 
pathway between treatment and outcome.  Confounders, unfortunately, cannot be selected based 
on statistical associations alone because some types of bias inducing variables statistically 
behave like confounders.  A common effect of two variables on a backdoor pathway is 
considered a collider.  Colliders statistically behave like confounders, but pathways that include 
colliders are considered closed and do not bias the targeted effect estimate.  Adjustment for 
colliders opens up additional pathways that can generate bias if necessary variables on the newly 
opened pathway are not appropriately adjusted. 
 
Conditioning on the common effect of two variables (i.e., colliders) turns out to be the structural 
explanation for all types of selection bias.  Selection bias occurs when participation in the study 
though volunteerism, design, adherence to treatment, or followup is influenced by the treatment 

Figure S2.4. DAG illustrating selection 
bias. Treatment (A) is randomized. 
Subjects randomized to CCBs (A=1) are 
more likely to drop out due to adverse drug 
effects. Subjects with alcohol abuse (C=1) 
are more likely to drop out of the study and 
they are also more likely to experience 
acute liver failure (Y=1). Conditioning on 
selection (retention in study) (S=1) induces 
an association between A and C, which 
results in an open biasing pathway between 
A and Y. 
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and either the outcome or risk factors for the outcome.  Some forms of selection bias, such as 
differential loss to followup, can be corrected by statistical techniques that analyze a 
pseudopopulation based on the subpopulation that were not lost to followup.   
 
The use of DAGs can help researchers clarify and discuss their beliefs about the underlying data 
generating process, which can then aid the interpretation of statistical associations observed in 
the data.  Developing DAGs is not always easy and may require a heuristic approach where 
assumptions are tested by observed statistical association and revised.  A disciplined approach to 
developing DAGs may be useful for communicating findings and providing rationale for 
covariate selection.  As discussed in chapter 7, there are often situations where a complete 
understanding of the causal network linking treatment to outcome is unknown.  Empirical 
variable selection techniques may be employed to identify potential confounders for 
consideration.  In addition, we described methods for selecting covariates based on incomplete 
knowledge of the causal structure.  In this case, simplifying rules, such as selecting all direct 
causes of treatment and/or outcome may, in certain circumstances, be a good technique for 
removing confounding when the full causal structure is unknown.13  Familiarity with  DAG 
theory will improve the investigators’ understanding of the logic and principles behind covariate 
selection for nonexperimental CER.  Furthermore, use of DAGs standardizes the language for 
covariate selection thus improving communication and clarity within the field and among 
investigators. 
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Checklist:	
  Guidance	
  and	
  Key	
  Considerations	
  for	
  DAG	
  development	
  and	
  use	
  in	
  CER	
  Protocols	
  and	
  Proposals	
  
 

Guidance Key Considerations Check 
Develop a simplified DAG to 
illustrate concerns about bias 

- Use a DAG to illustrate and communicate known sources of bias, such as 
important well known confounders and causes of selection bias.  

Develop complete DAG(s) to 
identify a minimal set of 
covariates 

- Construction of DAGs should not be limited to measured variables from 
available data; they must be constructed independent from available data. 

- The most important aspect of constructing a causal DAG is to include on the 
DAG any common cause of any other two variables on the DAG.  

- Variables that only causally influence one other variable (exogenous variables) 
may be included or omitted from the DAG, but common causes must be 
included for the DAG to be considered causal. 

- Identify a minimal set of covariates that blocks all backdoor paths and does not 
inadvertently open closed pathways by conditioning on colliders or 
descendants. 
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